Structural Simplification of Jack-Up Rig and Its Dynamic Responses in Regular Waves

1988 ◽  
Vol 32 (02) ◽  
pp. 134-153
Author(s):  
Jong-Shyong Wu ◽  
Cuann-Yeu Chang

This paper is composed of two main parts: simplification of leg structure of the jack-up rig, and dynamic analysis of the entire rig due to excitation of regular waves. First, the legs of spatial beamlike lattice with rigid joints are replaced by the equivalent beams through application of the theory of static condensation and the principle of virtual work. Then the equations of motion of the entire rig are derived based on the simplified mathematical model, and the natural frequencies and mode shapes are sought by the Jacobi method. Finally, the dynamic behavior of the hinged rig and fixed rig operating in four kinds of water depths (and hence effective leg lengths) and wave heights is studied by means of the mode superposition technique. The phase angles between responses of the legs and the influence on responses of support conditions at the seabed, wave attack angle, and damping ratio are the key points of the investigation.

2011 ◽  
Vol 105-107 ◽  
pp. 408-411
Author(s):  
Nan Hong Ding ◽  
Li Xia Lin ◽  
Yong Jiu Qian ◽  
Lei Huang

Damping in double Cables suspension bridge composed of steel reinforcement beams and reinforced concrete tower is non-classical, which leads to coupled equations of motion in main coordinate system. Based on the complex damping theory, the viscous damping ratio is solved, which can be used to describe energy dissipation characteristics of non-classical damping system approximately. Seismic response of double chains suspension bridge is analyzed through an example of double chains suspension bridge, considering the geometric nonlinearity and non-classical damping. And numerical calculation is presented for seismic response subjected to independent effect or combination effect of three orthogonal components of seismic wave. Single cable suspension bridge can be taken as a special case of double cable suspension bridge, after the main cable shape coefficient is introduced. The dynamic responses of double cable suspension bridge and single cable suspension bridge are compared to reveal the characteristics of Seismic Response of double cable suspension bridge. The study of the dynamic responses characteristics of double cable suspension bridge has a positive significance on structural form selection of such type bridge during designing, dynamic performance evaluation and reinforcement design has positive significance.


2019 ◽  
Vol 19 (04) ◽  
pp. 1950050 ◽  
Author(s):  
Xiang Xiao ◽  
Wei-Xin Ren

There has been a growing interest to carry out the vehicle–track–bridge (VTB) dynamic interaction analysis using 2D or 3D finite elements based on simplified wheel–rail relationships. The simplified or elastic wheel–rail contact relationships, however, cannot consider the lateral contact forces and geometric shapes of the wheel and rails, and even the occasional jump of wheels from the rails. This does not guarantee a reliable analysis for the safety running of trains over bridges. To consider the wheel–rail constraint and contact forces, this paper proposes a versatile 3D VTB element, consisting of a vehicle, eight rail beam elements, four bridge beam elements, and continuous springs as well as the dampers between the rail and bridge girder. With the 3D VTB element matrices formulated, a procedure for assembling the interaction matrices of the 3D VTB element is presented based on the virtual work principle. The global equations of motion of the VTB interaction system are established accordingly, which can be solved by time integration methods to obtain the dynamic responses of the vehicle, track and bridge, as well as the stability and safety indices of the moving train. Finally, an illustrative example is used to verify the proposed the versatile 3D VTB element for the dynamic interactive analysis of railway bridges under moving train loads.


Author(s):  
Fredy Coral Alamo ◽  
Hans Ingo Weber

The dynamics of a long slender beam, intrinsically straight, is addressed systematically for 3-D problems using the Cosserat rod theory. The model developed allows for bending, extension/compression and torsion, thus enabling the study of the dynamics of various types of elastic deformations. In this work a linear constitutive relation is used, also, the Bernoulli hypothesis is considered and the shear deformations are neglected. The fundamental problem when using any finite element (FE) formulation is the choice of the displacement functions. When using Cosserat rod theory this problem is handled using approximate solutions of the nonlinear equations of motion (in quasi-static sense). These nonlinear displacement functions are functions of generic nodal displacements and rotations. Based on the Lagrangian approach formed by the kinetic and strain energy expressions, the principle of virtual work is used to derive the nonlinear ordinary differential equations of motion that are solved numerically. As an application, a curved rod, formed by many straight elements is investigated numerically. When using the Cosserat rod approach, that take into account all the geometric nonlinearities in the rod, the higher accuracy of the dynamic responses is achieved by dividing the system into a few elements which is much less than the traditional FE methods, this is the main advantage when using this approach. Overall, the Cosserat model provides an accurate way of modelling long slender beams and simulation times are greatly reduced through this approach.


Author(s):  
Weihan Tang ◽  
Seunghun Baek ◽  
Bogdan I. Epureanu

In operation, rotating bladed disks (blisks) are often subject to high levels of dynamic loading, resulting in large amplitudes of forced vibrations especially at resonance. Moreover, variations in structural properties of individual sectors, referred to as mistuning, can lead to strain energy localization and can amplify forced responses. To prevent damages caused by high cycle fatigue, various frictional damping sources are introduced to dissipate vibration energy. Due to the nonlinear behavior of frictional contacts, conventional methods to study the dynamics of the blisk-damper systems are based often on numerical time integration, which is time-consuming and can be computationally prohibitive due to the large sizes of commercial blisk models. Existing techniques for model reduction either rely heavily on cyclic symmetry of the blisk-damper system, or are based on component mode synthesis (CMS). However, in the presence of mistuning, cyclic symmetry no longer exists. Also, mistuning is random and best studied statistically. Repetitive CMS condensation for a large amount of random mistuning patterns can lead to a computationally formidable task. This paper presents a reduced-order modeling technique to efficiently capture the nonlinear dynamic responses of blisk-damper systems with both small perturbations in blade material properties (small mistuning), and significant changes in the blisk geometries (large mistuning). The reduced-order models (ROMs) are formed by projecting the blisk-damper systems onto a novel mode basis that mimics the contact behavior. This mode basis contains normal mode shapes of the mistuned blisk-damper systems with either sliding or sticking conditions enforced on the contact surfaces. These mode shapes are computed through the N-PRIME method, a technique recently developed by the authors to efficiently obtain mode shapes for blisks with simultaneous large and small mistuning. The resulting modal nonlinear equations of motion are solved by a hybrid frequency/time (HFT) domain method with continuation. In the HFT method, the contact status and friction forces are determined in the time domain by a quasi-two-dimensional contact model at each contact point, whereas the modal equations of motion are solved in the frequency domain according to a harmonic balance formulation. The forced responses computed by the proposed ROMs are validated for two systems with distinct mistuning patterns. A statistical analysis is performed to study the effectiveness of the frictional dampers under random mistuning patterns.


Author(s):  
Sudheesh Ramadasan ◽  
Longbin Tao ◽  
Arun Kr Dev

Abstract A simple mathematical model is developed based on the single-degree-of-freedom analogy and principle of conservation of energy evaluating various modes of Vortex-Induced-Vibration (VIV) of a jack-up with cylindrical legs in regular waves. Similar to uniform current, mass ratio, damping ratio and mode factor are found to be the important parameters controlling the cross-flow VIV and radius of gyration also for the yaw VIV. Criteria for the initiation of the mentioned VIV modes are developed for the cases of a single 2D cylinder experiencing planar oscillatory flow, four rigidly coupled 2D cylinders in rectangular configuration experiencing planar oscillatory flow and jack-up experiencing regular waves. The newly developed VIV model is validated by a set of experiments conducted in a wind, wave and current flume. The importance of mass damping parameter is further demonstrated in suppressing VIV in regular waves. The mathematical method will equip engineers to consider the effect of VIV due to regular waves in jack-up designs.


2016 ◽  
Vol 40 (6) ◽  
pp. 518-527 ◽  
Author(s):  
Takwa Sellami ◽  
Hanen Berriri ◽  
A Moumen Darcherif ◽  
Sana Jelassi ◽  
M Faouizi Mimouni

In this article, the dynamic responses of wind turbine systems are analytically and numerically investigated. For this purpose, analytic differential equations of motion of wind turbine components subjected to vibration (the blades, the nacelle, and the tower) are solved. This allows determining their dynamic characteristics, mode shapes, and natural frequencies. Two models of two three-dimensional (3D) micro-turbine that are created by the finite element method are set up using the new version of the academic finite element analysis software ANSYS. The first wind turbine is a standard micro three-bladed turbine and the second one is a micro six-bladed Rutland 504. Their natural frequencies and mode shapes are identified based on the modal analysis principle to check the validity of designed models. Dynamic behaviors at several operating conditions of wind turbines are established. Then, spectrum graphs of the structures along x-, y- and z-axis are analyzed.


2006 ◽  
Vol 06 (03) ◽  
pp. 413-430 ◽  
Author(s):  
PRITSATHAT SEETAPAN ◽  
SOMCHAI CHUCHEEPSAKUL

The deflection, bending moment, shear force and acceleration-time histories of a two-span beam subjected to moving sprung vehicles are presented. The vehicle model is a 2DOF system with a constant velocity. The two-span beam with a rough surface is used as structure model. The beam is defined in modal domain by natural frequencies, mode shapes and modal damping values. The rough surface is modeled by filtered white noise. The equations of motion for the coupled vehicle-structure system are formulated, for non-dimensionalized variables in the system equation. The first-order linear stochastic differential equations are solved, and the effects of the span passage rate and other important parameters are studied.


2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


2004 ◽  
Vol 126 (1) ◽  
pp. 175-183 ◽  
Author(s):  
E. P. Petrov

An effective method for analysis of periodic forced response of nonlinear cyclically symmetric structures has been developed. The method allows multiharmonic forced response to be calculated for a whole bladed disk using a periodic sector model without any loss of accuracy in calculations and modeling. A rigorous proof of the validity of the reduction of the whole nonlinear structure to a sector is provided. Types of bladed disk forcing for which the method may be applied are formulated. A multiharmonic formulation and a solution technique for equations of motion have been derived for two cases of description for a linear part of the bladed disk model: (i) using sector finite element matrices and (ii) using sector mode shapes and frequencies. Calculations validating the developed method and a numerical investigation of a realistic high-pressure turbine bladed disk with shrouds have demonstrated the high efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document