Three-Dimensional Effects in Ship Relative-Motion Problems

1989 ◽  
Vol 33 (04) ◽  
pp. 261-268 ◽  
Author(s):  
Robert F. Beck ◽  
Arne E. Loken

The total relative motion between a ship and the sea surface, including the effects of the ship motions, the incident waves, the diffracted waves, and the radiated waves, is discussed. The radiated and diffracted wave components are calculated using the theory of Salvesen, Tuck, and Faltinsen (1970) with the zero-speed potentials determined by fully three-dimensional calculations. Comparisons with experiments and other theoretical calculations for a simple mathematical hull form are given. The proposed theory shows significant improvement over slender-body theory for the diffraction component and is equal to or better than strip theory for the radiation component.

1962 ◽  
Vol 13 (1) ◽  
pp. 1-16
Author(s):  
J. C. Cooke

SummaryA three-dimensional laminar-boundary-layer calculation is carried out over the area concerned. The external flow is simplified, being calculated by slender-body theory assuming conical flow, with two point vortices above the wing, their positions and strength being determined by experiment. Attempts are made to draw transition fronts both for two-dimensional and sweep instability from this calculation. The combination of these gives fronts similar to those observed in some experiments. Because there is little or no pressure gradient over the area in question it is suggested that it is a region where distributed suction might usefully be applied in order to maintain laminar flow and reduce drag.


1974 ◽  
Vol 66 (1) ◽  
pp. 145-157 ◽  
Author(s):  
Stanley G. Rubin ◽  
Frank J. Mummolo

The application of slender-body theory to the evaluation of the three-dimensional surface velocities induced by a boundary layer on an elliptic cylinder is considered. The method is applicable when the Reynolds number is sufficiently large so that the thin-boundary-layer approximation is valid. The resulting potential problem is reduced to a two-dimensional consideration of the flow over an expanding cylinder with porous boundary conditions. The limiting solutions for a flat plate of finite span and a nearly circular cross-section are obtained in a simple analytic form. In the former case, within the limitations of slender-body theory, the results are in exact agreement with the complete three-dimensional solution for this geometry.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Alfred von Loebbecke ◽  
Rajat Mittal ◽  
Frank Fish ◽  
Russell Mark

Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer’s propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.


1982 ◽  
Vol 116 ◽  
pp. 59-75 ◽  
Author(s):  
Mark H. Holmes

A three-dimensional hydroelastic model of the dynamical motion in the cochlea is analysed. The fluid is Newtonian and incompressible, and the basilar membrane is modelled as an orthotropic elastic plate. Asymptotic expansions are introduced, based on slender-body theory and the relative high frequencies in the hearing range, which reduce the problem to an eigenvalue problem in the transverse cross-section. After this, an example is worked out and a comparison is made with experiment and the earlier low-frequency theory.


2005 ◽  
Vol 49 (03) ◽  
pp. 191-206
Author(s):  
Hajime Kihara ◽  
Shigeru Naito ◽  
Makoto Sueyoshi

A nonlinear numerical method is presented for the prediction of the hydrodynamic forces that act on an oscillating ship with a forward speed in head waves. A "parabolic" approximation of equations called "2.5D" or "2D+T" theory was used in a three-dimensional ship wave problem, and the computation was carried out in the time domain. The nonlinear properties associated with the hydrostatic, hydrodynamic, and Froude-Krylov forces were taken into account in the framework of the slender body theory. This work is an extension of the previous work of Kihara and Naito (1998). The application of this approach to the unsteady wave-making problem of a ship with a real hull form is described. The focus is on the influence of the above-water hull form on the horizontal mean wave force. Comparison with experimental results demonstrates that the method is valid in predicting added resistance. Prediction of added resistance for blunt ships is also shown by example.


The radiation and diffraction of water waves by ships can be analysed in classical terms from potential theory. The linearized formulation is well studied, but robust numerical implementations have been achieved only in cases where the vessel is stationary or oscillating about a fixed mean position. Slender-body approximations have been used to rationalize and extend the strip theory of ship motions, providing analytic solutions and guidance in the development of more general numerical methods. The governing equations are reviewed, with emphasis on the interactions between the steady-state velocity field due to the ship’s forward translation and the perturbations due to its unsteady motions in waves. Recent computations based on the boundary-integral-equation method are described, and encouraging results are noted. There is growing evidence that the influence of the steady-state velocity field is important, and the degree of completeness required to account for the steady field depends on the fullness of the ship. Benchmark computations are needed to test theories and computer programs without the uncertainty inherent in experimental comparisons.


Author(s):  
Jochen Schoop-Zipfel ◽  
Moustafa Abdel-Maksoud

The forces acting on a maneuvering ship are determined with the in-house potential code panMARE. For slender ships with salient hull features, the forces and moments can be captured by properly treating the shed vorticity. For blunt ships it is not possible to directly determine the strength of the vorticity and the position where it leaves the hull. Therefore, it is easier and not less accurate to account for separation forces via semi-empirical formulae. These corrections are based on slender body theory or extensive RANS computations. The mass forces can be determined directly by potential theory. Forces and moments due to rudder and propeller are calculated using state-of-the-art procedures. Arbitrary maneuvers can be simulated by using the equations of motion. With the applied corrections a satisfactory agreement with model test results can be obtained. Wave excitation forces can be introduced to incorporate the influence of sea states. These forces are determined with strip theory. While the forces agree well with measured data, a deviation can be observed in the motions.


1966 ◽  
Vol 10 (03) ◽  
pp. 192-200
Author(s):  
E. O. Tuck

A simple mathematical example, using the slender-body theory of ship motions, is given to illustrate the nature of errors due to short-crestedness in estimations of ship transfer functions from full-scale measurements in directionally random seas. As expected physically, any transfer function obtained in this manner is a smoothed estimate of the true transfer function which would be observed in a unidirectional sea. Computations of this "pseudotransfer function" are presented for heave and pitch of an idealized ship at zero speed, and the effects of forward speed are discussed briefly.


Author(s):  
Christopher C. Bassler ◽  
Ronald W. Miller

Recent advancements have been made to consider the effects of large amplitude motions for roll damping models used for numerical ship motion performance assessments. These advancements have been focused on the development and expansion of models for potential flow simulation tools with sectional formulations. However, additional 3D effects due to vortex shedding, flow convection downstream, waves, and bilge keel emergence and submergence during large roll motion may be important, but are typically neglected in the sectional formulations. A series of RANS computations were performed for both 2D and 3D conditions of large amplitude ship roll motion, with and without forward speed, and in calm water and in waves. Comparisons were made to available experimental data for the 2D calm water conditions at zero-speed. These results were then assessed with the 3D conditions to develop improved understanding of additional 3D effects, including forward speed and waves, which should be considered for future developments of strip-theory approaches for ship motions prediction.


Sign in / Sign up

Export Citation Format

Share Document