scholarly journals Endocrine hormone involved in the reproduction of cephalopods.

Author(s):  
HIROYUKI MINAKATA
Keyword(s):  
2019 ◽  
Vol 25 (23) ◽  
pp. 2555-2568 ◽  
Author(s):  
Rajeev Taliyan ◽  
Sarathlal K. Chandran ◽  
Violina Kakoty

Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer’s Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Egli-Spichtig ◽  
Martin Y. H. Zhang ◽  
Alfred Li ◽  
Eva Maria Pastor Arroyo ◽  
Nati Hernando ◽  
...  

AbstractFibroblast growth factor 23 (FGF23) is a bone-derived endocrine hormone that regulates phosphate and vitamin D metabolism. In models of FGF23 excess, renal deoxyribonuclease 1 (Dnase1) mRNA expression is downregulated. Dnase-1 is an endonuclease which binds monomeric actin. We investigated whether FGF23 suppresses renal Dnase-1 expression to facilitate endocytic retrieval of renal sodium dependent phosphate co-transporters (NaPi-IIa/c) from the brush border membrane by promoting actin polymerization. We showed that wild type mice on low phosphate diet and Fgf23−/− mice with hyperphosphatemia have increased renal Dnase1 mRNA expression while in Hyp mice with FGF23 excess and hypophosphatemia, Dnase1 mRNA expression is decreased. Administration of FGF23 in wild type and Fgf23−/− mice lowered Dnase1 expression. Taken together, our data shows that Dnase1 is regulated by FGF23. In 6-week-old Dnase1−/− mice, plasma phosphate and renal NaPi-IIa protein were significantly lower compared to wild-type mice. However, these changes were transient, normalized by 12 weeks of age and had no impact on bone morphology. Adaptation to low and high phosphate diet were similar in Dnase1−/− and Dnase1+/+ mice, and loss of Dnase1 gene expression did not rescue hyperphosphatemia in Fgf23−/− mice. We conclude that Dnase-1 does not mediate FGF23-induced inhibition of renal tubular phosphate reabsorption.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhihong Dai ◽  
Furong Zhao ◽  
Ying Li ◽  
Jing Xu ◽  
Zhiyu Liu

Bromophenols (BPs), known as an important environmental contaminant, can cause endocrine disruption and other chronic toxicity. The study aimed to investigate the potential inhibitory capability of BPs on four human sulfotransferase isoforms (SULT1A1, SULT1A3, SULT1B1 and SULT1E1) and interpret how to interfere with endocrine hormone metabolism. P-nitrophenol(PNP) was utilized as a nonselective probe substrate, and recombinant SULT isoforms were utilized as the enzyme resources. PNP and its metabolite PNP-sulfate were analyzed using a UPLC-UV detecting system. SULT1A1 and SULT1B1 were demonstrated to be the most vulnerable SULT isoforms towards BPs’ inhibition. To determine the inhibition kinetics, 2,4,6-TBP and SULT1A3 were selected as the representative BPs and SULT isoform respectively. The competitive inhibition of 2,4,6-TBP on SULT1A3. The fitting equation was y=90.065x+1466.7, and the inhibition kinetic parameter (Ki) was 16.28 µM. In vitro-in vivo extrapolation (IVIVE) showed that the threshold concentration of 2,4,6-TBP to induce inhibition of SULT1A3 was 1.628 µM. In silico docking, the method utilized indicated that more hydrogen bonds formation contributed to the stronger inhibition of 3,5-DBP than 3-BP. In conclusion, our study gave the full description of the inhibition of BPs towards four SULT isoforms, which may provide a new perspective on the toxicity mechanism of BPs and further explain the interference of BPs on endocrine hormone metabolism.


2010 ◽  
Vol 206 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Sophie Bernichtein ◽  
Philippe Touraine ◽  
Vincent Goffin

Human prolactin (PRL) is currently viewed as a hormone of pituitary origin, whose production (i.e. serum levels) is controlled by dopamine, whose biological actions relate exclusively to lactation and reproductive functions, for which any genetic disorder is yet to be identified, and whose unique associated pathology is hyperprolactinemia. Both experimental studies and human sample/cohort-based investigations performed during the past decade have considerably widened our perception of PRL biology: i) there are now strong epidemiological arguments supporting the fact that circulating PRL is a risk factor for breast cancer, ii) in addition to the endocrine hormone, locally produced PRL has been documented in several human tissues; there is increasing evidence supporting the tumor growth potency of local PRL, acting via autocrine/paracrine mechanisms, in both rodent models, and human breast and prostate tumors, iii) the first functional germinal polymorphisms of the PRL receptor were recently identified in patients presenting with breast tumors, which involve single amino acid substitution variants exhibiting constitutive activity, iv) human PRL analogs have been engineered, which were shown in experimental models to down-regulate the effects triggered by local PRL (competitive antagonism) or by the constitutively active receptor variants (inverse agonism). The aim of this review is to discuss these novel concepts in PRL biology, including their potential pathophysiological outcomes.


2019 ◽  
Vol 35 (10) ◽  
pp. 647-659 ◽  
Author(s):  
Shuangshuang Wu ◽  
Dongyan Huang ◽  
Xin Su ◽  
Han Yan ◽  
Jianhui Wu ◽  
...  

Prostate is sensitive to endocrine hormone level, and the synergetic effect of estrogen and androgen is critical in prostate growth. The change of signal pathways caused by the imbalance of estrogen and androgen might function in the occurrence of prostate diseases. As a well-known endocrine disruptor compound, bisphenol A (BPA) can disturb the normal function of endocrine hormone and affect prostate development. This study aims to investigate effects of BPA on the dorsolateral prostate (DLP) and the related gene expression of the tissue in adult Sprague- Dawley (SD) rats and to explore the mechanism for the effect of low-dose BPA on DLP hyperplasia. Three-month-old male SD rats were treated with BPA (10.0, 30.0, or 90.0 µg (kg.day)−1, gavage) or vehicle (gavage) for 4 weeks. BPA significantly increased the DLP weight, the DLP organ coefficient, and the prostate epithelium height ( p < 0.01) of rats dose-dependently. Microarray analysis and quantitative real-time polymerase chain reaction showed that BPA significantly upregulated the transcriptional levels of some genes, including pituitary tumor transforming gene 1, epidermal growth factor, Sh3kbp1, and Pcna. Furthermore, the expression of PCNA ( p < 0.01), androgen receptor ( p < 0.01), and EGF receptor (EGFR) ( p < 0.001) in DLP was increased significantly by BPA treatment, and the expression of estrogen receptor alpha was also upregulated. The findings evidenced that low-dose BPA could induce DLP hyperplasia in adult rats, and the upregulated EGF/EGFR pathway that was responsive to estrogen and androgen might play an essential role in the DLP hyperplasia induced by low-dose BPA.


Sign in / Sign up

Export Citation Format

Share Document