scholarly journals MDM2 ubiquitin-ligase down-regulate energy metabolism of cancer cells

2019 ◽  
Vol 35 (3) ◽  
pp. 233-233
Author(s):  
O. Shuvalov ◽  
A. Petukhov ◽  
O. Fedorova ◽  
A. Daks ◽  
E. Baidyuk ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A778-A778
Author(s):  
Minhyuk Yun ◽  
Goo-Young Kim ◽  
Sang Woo Jo ◽  
Changhoon In ◽  
Gyu-Young Moon ◽  
...  

BackgroundNAD(P)H-quinone oxidoreductase 1 (NQO1) is a cytosolic two-electron oxidoreductase overexpressed in many types of cancers, including breast cancer, pancreatic cancer, colorectal cancer, cholangiocarcinoma, uterine cervical cancer, melanoma, and lung cancer.1Up-regulation of NQO1 protects cells from oxidative stress and various cytotoxic quinones and is associated with late clinical stage, poor prognosis and lymph node metastasis.2 3 NQO1 increases stability of HIF-1α protein, which has been implicated in survival, proliferation, and malignance of cancer.1 Therefore, accumulating evidences suggest NQO1 as a promising therapeutic target for cancer. Accordingly, we have characterized the effect of a novel synthetic NQO1 substrate SBSC-S3001, and demonstrated its selective cytotoxic effects in cancer cells with high expression of NQO1.MethodsIn vitro cytotoxicity was determined by sulforhodamine B (SRB) assay in cancer cells with high NQO1 expression and CRISPR-mediated NQO1 knockout cells. The effect of SBSC-S3001 on the energy metabolism pathway was evaluated by western blot analysis of metabolism associated proteins from NQO1-overexpressed cancer cells treated with the compound for 24 hours. In vivo anti-tumor activity was evaluated in MC38 syngeneic and DLD-1 orthotopic mice models.ResultsSBSC-S3001 exhibited selective cytotoxicity in cancer cells with high expression of NQO1 in a dose-dependent manner. The cytotoxicity was observed in both normoxia and hypoxia conditions, correlating with the energy metabolism, mitochondrial biogenesis, and cancer proliferative pathways. Also, stronger cytotoxicity was observed in NQO1-overexpressed cancer cells treated with SBSC-S3001 compared to beta-lapachone and analogue treatment.4 When evaluated in vivo, SBSC-S3001 effectively inhibited the growth of syngeneic and orthotopic tumors when administered as a monotherapy. SBSC-S3001 treatment associated with reduction in key enzymes of the glycolytic pathway (LDHa and GAPDH) and HIF-1α and increase in levels of mitochondrial oxidative phosphorylation (OXPHOS) complex.ConclusionsTreatment of SBSC-S3001, a novel, NQO1-specific substrate reduces HIF-1α and key enzymes associated with glycolysis and suppresses the growth of tumors overexpressing NQO1. Further characterization of SBSC-S3001 as a novel metabolic anti-cancer agent for cancers with NQO1 overexpression is warranted.Ethics ApprovalThe study was approved by Samyang Biopharmaceuticals Institution’s Ethics Board, approval number SYAU2031.ReferencesOh ET, Kim JW, Kim JMet. al., NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun 2016; 14:13593.Ma, Y. et al. NQO1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer 2014;14: 414Yang, Y. et al. Clinical implications of high NQO1 expression in breast cancers. J. Exp. Clin. Cancer Res 2014;33:144.Yang Y, Zhou X, Xu M, et al., β-lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Sci Rep 2017;7:2681.


2011 ◽  
Vol 192 (3) ◽  
pp. 497-512 ◽  
Author(s):  
Elisabeth D. Coene ◽  
Catarina Gadelha ◽  
Nicholas White ◽  
Ashraf Malhas ◽  
Benjamin Thomas ◽  
...  

BRCA1 C-terminal (BRCT) domains in BRCA1 are essential for tumor suppressor function, though the underlying mechanisms remain unclear. We identified ezrin, radixin, and moesin as BRCA1 BRCT domain–interacting proteins. Ezrin–radixin–moesin (ERM) and F-actin colocalized with BRCA1 at the plasma membrane (PM) of cancer cells, especially at leading edges and focal adhesion sites. In stably expressing cancer cells, high levels of enhanced green fluorescent protein (EGFP)-BRCA11634–1863 acted as a dominant-negative factor, displacing endogenous BRCA1 from the PM. This led to delayed cell spreading, increased spontaneous motility, and irregular monolayer wound healing. MCF-7 cells (intact BRCA1) showed lower motility than HCC1937 cells (truncated BRCA1), but expression of EGFP-BRCA11634–1863 in MCF-7 increased motility. Conversely, full-length BRCA1 expression in HCC1937 decreased motility but only if the protein retained ubiquitin ligase activity. We conclude that full-length BRCA1 is important for complete tumor suppressor activity via interaction of its BRCT domains with ERM at the PM, controlling spreading and motility of cancer cells via ubiquitin ligase activity.


2019 ◽  
Author(s):  
Xi Qiao ◽  
Ying Liu ◽  
Maria Llamazares Prada ◽  
Abhishekh Gupta ◽  
Alok Jaiswal ◽  
...  

AbstractMYC protein expression has to be tightly controlled to allow for maximal cell proliferation without inducing apoptosis. Here we discover UBR5 as a novel MYC ubiquitin ligase and demonstrate how it functions as a molecular rheostat to prevent excess accumulation of MYC protein. UBR5 effects on MYC protein stability are independent on N-terminal FBW7 degron of MYC. Endogenous UBR5 inhibition induces MYC protein expression and activates MYC target genes. Moreover, UBR5 governs MYC-dependent phenotypes in vivo in Drosophila. In cancer cells, UBR5-mediated MYC protein suppression diminishes cell killing activity of cancer therapeutics. Further, we demonstrate that UBR5 dominates MYC protein expression at the single-cell level in human basal-type breast cancer tissue. Myc and Ubr5 are co-amplified in MYC-driven human cancer types, and UBR5 controls MYC-mediated apoptotic threshold in co-amplified basal type breast cancer cells. In summary, UBR5 is a novel MYC ubiquitin ligase and an endogenous rheostat for MYC protein expression in vivo. Clinically, expression of UBR5 may be important for protection of breast cancer cells from drug-induced, and MYC-dependent, apoptosis.


Oncotarget ◽  
2018 ◽  
Vol 9 (27) ◽  
pp. 18949-18969 ◽  
Author(s):  
Po-Lin Tseng ◽  
Chih-Wei Chen ◽  
Keng-Hsun Hu ◽  
Hung-Chi Cheng ◽  
Yuan-Ho Lin ◽  
...  

2021 ◽  
Author(s):  
Gustavo Martínez-Noël ◽  
Patricia Szajner ◽  
Rebecca E. Kramer ◽  
Kathleen A. Boyland ◽  
Asma Sheikh ◽  
...  

Etiologically, 5% of all cancers worldwide are caused by the high-risk human papillomaviruses (hrHPVs). These viruses encode two oncoproteins (E6 and E7) whose expression is required for cancer initiation and maintenance. Among their cellular targets are the p53 and the retinoblastoma tumor suppressor proteins. Inhibition of the hrHPV E6-mediated ubiquitylation of p53 through the E6AP ubiquitin ligase results in the stabilization of p53, leading to cellular apoptosis. We utilized a live cell high throughput screen to determine whether exogenous microRNA (miRNA) transfection had the ability to stabilize p53 in hrHPV-positive cervical cancer cells expressing a p53-fluorescent protein as an in vivo reporter of p53 stability. Among the miRNAs whose transfection resulted in the greatest p53 stabilization was 375-3p that has previously been reported to stabilize p53 in HeLa cells, providing validation of the screen. The top 32 miRNAs in addition to 375-3p were further assessed using a second cell-based p53 stability reporter system as well as in non-reporter HeLa cells to examine their effects on endogenous p53 protein levels, resulting in the identification of 23 miRNAs whose transfection increased p53 levels in HeLa cells. While a few miRNAs that stabilized p53 led to decreases in E6AP protein levels, all targeted HPV oncoprotein expression. We further examined subsets of these miRNAs for their abilities to induce apoptosis and determined whether it was p53-mediated. The introduction of specific miRNAs revealed surprisingly heterogeneous responses in different cell lines. Nonetheless, some of the miRNAs described here have potential as therapeutics for treating HPV-positive cancers. Importance Human papillomaviruses cause approximately 5% of all cancers worldwide and encode genes that contribute to both the initiation and maintenance of these cancers. The viral oncoprotein E6 is expressed in all HPV-positive cancers and functions by targeting the degradation of p53 through the engagement of the cellular ubiquitin ligase E6AP. Inhibiting the degradation of p53 leads to apoptosis in HPV-positive cancer cells. Using a high throughput live cell assay we identified several miRNAs whose transfection stabilize p53 in HPV-positive cells. These miRNAs have the potential to be used in the treatment of HPV-positive cancers.


Sign in / Sign up

Export Citation Format

Share Document