scholarly journals Genomic biotechnology of assessment and selection of linseed breeding material

1970 ◽  
Vol 21 ◽  
pp. 33-36
Author(s):  
V. A. Lemesh ◽  
M. V. Bogdanova ◽  
E. L. Andronyk ◽  
I. A. Golub

Aim. The aim of this study was to develop of genomic biotechnology for the assessment and selection of the linssed breeding material by a complex of genes controlling the ratio of fatty acids in seeds oil to the creation of a new linseed variety. Methods. Breeding studies were combined with molecular-genetic studies. Results. We developed the genomic biotechnology to detect the mutant alleles of linseed fad3A and fad3B genes responsible for reduced α-linolenic acid levels in linseed oil. Using this biotechnology, it was possible to classify plants as homozygous mutant, homozygous wild type, or heterozygous at fad3A and fad3B loci, that can be used to breed new linseed varieties of food or industrial quality. Conclusions. By results of 3-year molecular-genetic and breeding studies the variety "Dar" was created with using the developed genomic biotechnology of an assessment and selection of linseed breeding material by a complex of the genes controlling the ratio of fatty acids in seeds oil.Keywords: linseed (Linum usitatissimum L.), α-linolenic acid, fatty acid desaturase, fad3 genes.

2017 ◽  
Vol 63 (4) ◽  
pp. 26-33 ◽  
Author(s):  
Grażyna Silska

Summary Introduction: Polish oilseed and flaxseed collection is a source of genotypes containing very high amounts of α-linolenic acid. Objective: The objective of the study is to test the seeds for the fat content and fatty acids composition in the oil pressed from the 9 tested accessions of flax (Linum usitatissimum L.). Our goal is to promote the Polish flax collection, which seeds are unique as one of the richest sources of α-linolenic acid. Methods: Assays to determine the content of fat and fatty acids composition in linseed oil were performed at the IHAR-PIB Biochemical Laboratory in Poznań. The fat content was determined by infrared analysis (calibration performed on the basis of seed sample at IHAR-PIB in Poznań) by means of a NIRS 6500 spectrophotometer with a reflection detector within the range of 400-2500 nm. The composition of fatty acids was determined by means of a method proposed by Byczyńska and Krzymański (1969), based on gas chromatography of methyl esters of fatty acids contained in linseed oil. The following varieties of flax were investigated: Tabare (INF00111), Szegedi 30 (INF00427), Olin (INF 00444), Redwood 65 (INF00523), Dufferin (INF00540), AC Mc Duff (INF00648), Alfonso Inta (INF00683), Olinette (INF00687), Royale (INF00689). Results: The content of α-linolenic acid (ALA, C18:3) in evaluated genotypes of flax ranged from 48.9 (Royale) to 59.9% (Alfonso Inta). Content of linoleic acid (LA, C18:2) in evaluated genotypes of flax ranged from 12.4 (Tabare) to 17.1% (AC Mc Duff). The content of oleic acid (OA, C18:1) of 9 accession of flax ranged from 17.1 (Alfonso Inta) to 26.7% (Royale). The content of stearic acid in evaluated genotypes of flax ranged from 2.3 (Alfonso Inta) to 5.0% (Tabare, Szegedi 30) and the content of palmitic acid ranged from 4.7 (Dufferin) to 6.0% (Olin). The content of fat ranged from 42.7 (Olin) to 52.0% (AC Mc Duff). The fatty acid ratio n-6/n-3 ranged from 0.23/1 (Tabare) to 0.32/1 (AC Mc Duff).


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1983-1990 ◽  
Author(s):  
Takahiro Oura ◽  
Susumu Kajiwara

Fungi, like plants, are capable of producing the 18-carbon polyunsaturated fatty acids linoleic acid and α-linolenic acid. These fatty acids are synthesized by catalytic reactions of Δ12 and ω3 fatty acid desaturases. This paper describes the first cloning and functional characterization of a yeast ω3 fatty acid desaturase gene. The deduced protein encoded by the Saccharomyces kluyveri FAD3 gene (Sk-FAD3) consists of 419 amino acids, and shows 30–60 % identity with Δ12 fatty acid desaturases of several eukaryotic organisms and 29–31 % identity with ω3 fatty acid desaturases of animals and plants. During Sk-FAD3 expression in Saccharomyces cerevisiae, α-linolenic acid accumulated only when linoleic acid was added to the culture medium. The disruption of Sk-FAD3 led to the disappearance of α-linolenic acid in S. kluyveri. These findings suggest that Sk-FAD3 is the only ω3 fatty acid desaturase gene in this yeast. Furthermore, transcriptional expression of Sk-FAD3 appears to be regulated by low-temperature stress in a manner different from the other fatty acid desaturase genes in S. kluyveri.


1944 ◽  
Vol 22f (6) ◽  
pp. 191-198 ◽  
Author(s):  
H. W. Lemon

Linseed oil that has been hydrogenated to a plastic consistency is subject to a type of deterioration termed "flavour reversion" when heated to temperatures used in baking or frying. Investigation of the course of hydrogenation of linseed oil by the spectral method of Mitchell, Kraybill, and Zscheile (11) has indicated that linolenic acid is converted to an isomeric linoleic acid; this acid differs from naturally occurring linoleic acid in that the double bonds are in such positions that diene conjugation is not produced by high-temperature saponification. In a typical hydrogenation, the concentration of the isomeric acid increased to a maximum, at about iodine number 120, of 18% of the total fatty acids, and at iodine number 80, at which point the plasticity was similar to that of a commercial shortening, the concentration of the isomer was 13%. Evidence is presented that the isomeric linoleic acid in partially hydrogenated linseed oil is responsible for the unpleasant flavour that develops when the oil is heated.


2006 ◽  
Vol 131 (2) ◽  
pp. 284-289 ◽  
Author(s):  
Mauricio A. Cañoles ◽  
Randolph M. Beaudry ◽  
Chuanyou Li ◽  
Gregg Howe

Six-carbon aldehydes and alcohols formed by tomato (Lycopersicon esculentum Mill.) leaf and fruit tissue following disruption are believed to be derived from the degradation of lipids and free fatty acids. Collectively, these C-6 volatiles comprise some of the most important aroma impact compounds. If fatty acids are the primary source of tomato volatiles, then an alteration in the fatty acid composition such as that caused by a mutation in the chloroplastic omega-3-fatty acid desaturase (ω-3 FAD), referred to as LeFAD7, found in the mutant line of `Castlemart' termed Lefad7, would be reflected in the volatile profile of disrupted leaf and fruit tissue. Leaves and fruit of the Lefad7 mutant had ≈10% to 15% of the linolenic acid (18:3) levels and about 1.5- to 3-fold higher linoleic acid (18:2) levels found in the parent line. Production of unsaturated C-6 aldehydes Z-3-hexenal, Z-3-hexenol, and E-2-hexenal and the alcohol Z-3-hexenol derived from 18:3 was markedly reduced in disrupted leaf and fruit tissue of the Lefad7 mutant line. Conversely, the production of the saturated C-6 aldehyde hexanal and its alcohol, hexanol, were markedly higher in the mutant line. The shift in the volatile profile brought about by the loss of chloroplastic FAD activity in the Lefad7 line was detected by sensory panels at high significance levels (P < 0.0005) and detrimentally affected fruit sensory quality. The ratios and amounts of C-6 saturated and unsaturated aldehydes and alcohols produced by tomato were dependent on substrate levels, suggesting that practices that alter the content of linoleic and linolenic acids or change their ratios can influence tomato flavor.


2021 ◽  
pp. 8-12
Author(s):  
Иван Александрович Кечкин ◽  
Георгий Несторович Панкратов ◽  
Ирина Сергеевна Витол

Введение в ежедневный рацион продуктов, обогащенных эссенциальными нутриентами, является актуальной задачей стратегии здорового питания. В этой связи особое место занимают продукты переработки зерна, как основы пирамиды здорового питания. Среди наиболее востребованных незаменимых нутриентов следует выделить полиненасыщенные жирные кислоты, и особенно жирные кислоты семейства ɷ-3. Главным источником линоленовой кислоты из растительного сырья является льняное масло, которое может быть введено в виде тонкоизмельченных семян льна в состав хлебопекарной муки. Химический состав продуктов питания на зерновой основе, полученных с использованием традиционной технологии, характеризуется недостаточной сбалансированностью, невысокой пищевой и биологической ценностью. В связи с этим с целью расширения ассортимента зерновых продуктов функциональной направленности общего, диетического и профилактического назначения на основе полизерновых смесей разработаны методология управления мукомольными свойствами зернового сырья при его переработке для получения продуктов питания на зерновой основе заданного состава и свойств; показана возможность совместного размола пшенично-льняной смеси с получением муки, обогащенной незаменимыми жирными кислотами (НЖК) - омега-3 (линоленовая кислота) и омега-6 (линолевая кислота); сформированы новые виды муки, обогащенные незаменимыми жирными кислотами; определены некоторые физико-химические характеристики пшеничной муки, обогащенной НЖК; выявлены особенности хлебопекарных свойств пшенично-льняной муки. На основании динамики изменения показателя кислотного числа жира (КЧЖ) спрогнозирован срок безопасного хранения пшенично-льняной муки, который составил 9,4 месяца. The introduction of foods fortified with essential nutrients into the daily diet is an urgent task of a healthy eating strategy. In this regard, grain processing products occupy a special place, as the basis of the pyramid of healthy nutrition. Among the most demanded essential nutrients are polyunsaturated fatty acids and especially fatty acids of the ɷ-3 family. The main source of linolenic acid from plant raw materials is linseed oil, which can be added in the form of finely ground flax seeds to baking flour. The chemical composition of grain-based food products obtained using traditional technology is characterized by insufficient balance, low nutritional and biological value. In this regard, in order to expand the range of functional grain products for general, dietary and prophylactic purposes on the basis of polygrain mixtures, the following have been developed: a methodology for controlling the milling properties of grain raw materials during its processing to obtain food products based on a grain basis of a given composition and properties; the possibility of joint grinding of a wheat-flax mixture to obtain flour enriched with essential fatty acids (EFA) - omega-3 (linolenic acid) and omega-6 (linoleic acid) is shown; formed new types of flour, enriched with essential fatty acids; some physicochemical characteristics of wheat flour enriched with EFA have been determined; the features of the baking properties of wheat-flax flour are revealed. Based on the dynamics of changes in the acid number of fat (FAT), the period of safe storage of wheat-flaxseed flour was predicted, which was 9.4 months.


2020 ◽  
Vol 161 ◽  
pp. 01093
Author(s):  
I.S. Khamagaeva ◽  
N.A. Zambalova ◽  
A.V. Tsyzhipova ◽  
A.T. Bubeev

The relationship between the content of polyunsaturated fatty acids (PUFAs) of flaxseed oil and the cholesterol-metabolizing activity of various strains of bifidobacteria was studied. The optimum dose of linseed oil in a nutrient medium for the cultivation of bifidobacteria was selected to provide high cholesterol destruction compared to the control. Of all the studied strains of bifidobacteria, the most pronounced destructive activity against cholesterol is displayed by the strain Bifidobacterium longum DK-100, which, with the biomass growth in a nutrient medium of linseed oil destroys 74% of the total cholesterol. When studying the fatty acid composition of the biomass of bifidobacteria, the oleic acid was found to predominate among monounsaturated fatty acids, and the α-linolenic acid to prevail among polyunsaturated fatty acids, that amounted to 44-45%. A decrease in the content of linolenic acid during the cultivation of bifidobacteria was noted, which is probably due to their participation of bifidobacteria in the metabolism. As a result of the studies, the optimum conditions for the cultivation of bifidobacteria were selected and the technological parameters of producing dietary supplements were justified.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Martina Vráblová ◽  
Daniel Vrábl ◽  
Barbora Sokolová ◽  
Dominika Marková ◽  
Marie Hronková

Abstract Background The plant cuticle represents one of the major adaptations of vascular plants to terrestrial life. Cuticular permeability and chemical composition differ among species. Arabidopsis thaliana is a widely used model for biochemical and molecular genetic studies in plants. However, attempts to isolate the intact cuticle from fresh leaves of Arabidopsis have failed so far. The goal of this study was to optimise an enzymatic method for cuticle isolation of species with a thin cuticle and to test it on several A. thaliana wild types and mutants. Results We developed a method for isolation of thin cuticles that allows reducing the isolation time, the separation of abaxial and adaxial cuticles, and avoids formation of wrinkles. Optical microscopy was used for studying cuticle intactness and scanning electron microscopy for visualisation of external and internal cuticle structures after isolation. Wax extracts were analysed by GC–MS. Isolation of intact cuticle was successful for all tested plants. The wax compositions (very-long-chained fatty acids, alcohols and alkanes) of intact leaves and isolated cuticles of wild type Col-0 were compared. Conclusions We conclude that the optimised enzymatic method is suitable for the isolation of A. thaliana adaxial and abaxial cuticles. The isolated cuticles are suitable for microscopic observation. Analysis of wax composition revealed some discrepancies between isolated cuticles and intact leaves with a higher yield of wax in isolated cuticles.


Sign in / Sign up

Export Citation Format

Share Document