scholarly journals In Vivo Cancer Targeting and Imaging-Guided Surgery with Near Infrared-Emitting Quantum Dot Bioconjugates

Theranostics ◽  
2012 ◽  
Vol 2 (8) ◽  
pp. 769-776 ◽  
Author(s):  
Yan Li ◽  
Zhe Li ◽  
Xiaohui Wang ◽  
Fengjun Liu ◽  
Yingsheng Cheng ◽  
...  
2020 ◽  
Author(s):  
Zhipeng Liu ◽  
Kang Li ◽  
Xingchen Duan ◽  
Zhiyong Jiang ◽  
Dan Ding ◽  
...  

Abstract J-aggregation has been proved to be an efficient strategy for the development of fluorescent imaging agents in the second near-infrared (NIR-II, 1000–1700 nm) window. However, the design of NIR-II fluorescent J-aggregates is challenging due to the lack of suitable J-aggregation dyes. Herein, we report meso-[2.2]paracyclophanyl-3,5-bis-N,N-dimethylaminostyrl BODIPY (PCP-BDP2) as the first example of BODIPY dye with J-aggregation induced NIR-II fluorescence. PCP-BDP2 shows emission maximum at 795 nm in diluted solution and NIR-II emission at 1010 nm in the J-aggregation state. Mechanism studies reveal that the steric and conjugation effect of the PCP group on the BODIPY core plays key roles in the J-aggregation behavior and NIR-II fluorescence tuning. Notably, NIR-II emissive J-aggregates of PCP-BDP2 can be efficiently stabilized in the assembled nanoparticle. Taking advantage of high quantum yield and good photo-/chemo-stability, J-aggregates of PCP-BDP2 show high-resolution and long-term in vivo NIR-II imaging ability. Furthermore, J-aggregates of PCP-BDP2 can be utilized for lymph node imaging and fluorescence-guided surgery in the nude mouse, which demonstrates their potential clinical application. This study not only demonstrates BODIPY dye as a new J-aggregation platform for developing NIR-II imaging agents but also encourages further exploration on J-aggregation induced NIR-II emission of the other conventional organic dyes.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Mallika Asar ◽  
Jessica Newton‐Northup ◽  
Susan Deutscher ◽  
Mette Soendergaard

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 984 ◽  
Author(s):  
Dmitry M. Polikarpov ◽  
Douglas H. Campbell ◽  
Lucinda S. McRobb ◽  
Jiehua Wu ◽  
Maria E. Lund ◽  
...  

Glioblastoma (GBM) is one of the most aggressive tumors and its 5-year survival is approximately 5%. Fluorescence-guided surgery (FGS) improves the extent of resection and leads to better prognosis. Molecular near-infrared (NIR) imaging appears to outperform conventional FGS, however, novel molecular targets need to be identified in GBM. Proteoglycan glypican-1 (GPC-1) is believed to be such a target as it is highly expressed in GBM and is associated with poor prognosis. We hypothesize that an anti-GPC-1 antibody, Miltuximab®, conjugated with the NIR dye, IRDye800CW (IR800), can specifically accumulate in a GBM xenograft and provide high-contrast in vivo fluorescent imaging in rodents following systemic administration. Miltuximab® was conjugated with IR800 and intravenously administered to BALB/c nude mice bearing a subcutaneous U-87 GBM hind leg xenograft. Specific accumulation of Miltuximab®-IR800 in subcutaneous xenograft tumor was detected 24 h later using an in vivo fluorescence imager. The conjugate did not cause any adverse events in mice and caused strong fluorescence of the tumor with tumor-to-background ratio (TBR) reaching 10.1 ± 2.8. The average TBR over the 10-day period was 5.8 ± 0.6 in mice injected with Miltuximab®-IR800 versus 2.4 ± 0.1 for the control group injected with IgG-IR800 (p = 0.001). Ex vivo assessment of Miltuximab®-IR800 biodistribution confirmed its highly specific accumulation in the tumor. The results of this study confirm that Miltuximab®-IR800 holds promise for intraoperative fluorescence molecular imaging of GBM and warrants further studies.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Joy L. Kovar ◽  
Lael L. Cheung ◽  
Melanie A. Simpson ◽  
D. Michael Olive

Prostate cancer is the most frequently diagnosed cancer in men and often requires surgery. Use of near infrared (NIR) technologies to perform image-guided surgery may improve accurate delineation of tumor margins. To facilitate preclinical testing of such outcomes, here we developed and characterized a PSMA-targeted small molecule, YC-27. IRDye 800CW was conjugated to YC-27 or an anti-PSMA antibody used for reference. Human 22Rv1, PC3M-LN4, and/or LNCaP prostate tumor cells were exposed to the labeled compounds.In vivotargeting and clearance properties were determined in tumor-bearing mice. Organs and tumors were excised and imaged to assess probe localization. YC-27 exhibited a dose dependent increase in signal upon binding. Binding specificity and internalization were visualized by microscopy.In vitroandin vivoblocking studies confirmed YC-27 specificity.In vivo, YC-27 showed good tumor delineation and tissue contrast at doses as low as 0.25 nmole. YC-27 was cleared via the kidneys but bound the proximal tubules of the renal cortex and epididymis. Since PSMA is also broadly expressed on the neovasculature of most tumors, we expect YC-27 will have clinical utility for image-guided surgery and tumor resections.


RSC Advances ◽  
2017 ◽  
Vol 7 (80) ◽  
pp. 50949-50954 ◽  
Author(s):  
Yue Xi ◽  
Jianjun Yang ◽  
Yunshen Ge ◽  
Shenli Zhao ◽  
Jianguang Wang ◽  
...  

Near-infrared (NIR) quantum dots (QDs) have been treated as a promising candidate of imaging agents for NIR fluorescence-guided surgery. Here, the RNase A-CuInS2 QDs is good candidate, which performers well in gastrointestinal system imaging.


2010 ◽  
Vol 46 (38) ◽  
pp. 7136 ◽  
Author(s):  
Ken-Tye Yong ◽  
Indrajit Roy ◽  
Wing-Cheung Law ◽  
Rui Hu

2017 ◽  
Vol 28 (2) ◽  
pp. 600-608 ◽  
Author(s):  
Yiming Zhao ◽  
Travis M. Shaffer ◽  
Sudeep Das ◽  
Carlos Pérez-Medina ◽  
Willem J. M. Mulder ◽  
...  
Keyword(s):  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ruizhen Jia ◽  
Han Xu ◽  
Chenlu Wang ◽  
Lichao Su ◽  
Jinpeng Jing ◽  
...  

AbstractAccurate diagnosis and effective treatment of primary liver tumors are of great significance, and optical imaging has been widely employed in clinical imaging-guided surgery for liver tumors. The second near-infrared window (NIR-II) emissive AIEgen photosensitizers have attracted a lot of attention with higher-resolution bioimaging and deeper penetration. NIR-II aggregation-induced emission-based luminogen (AIEgen) photosensitizers have better phototherapeutic effects and accuracy of the image-guided surgery/phototherapy. Herein, an NIR-II AIEgen phototheranostic dot was proposed for NIR-II imaging-guided resection surgery and phototherapy for orthotopic hepatic tumors. Compared with indocyanine green (ICG), the AIEgen dots showed bright and sharp NIR-II emission at 1250 nm, which extended to 1600 nm with high photostability. Moreover, the AIEgen dots efficiently generated reactive oxygen species (ROS) for photodynamic therapy. Investigations of orthotopic liver tumors in vitro and in vivo demonstrated that AIEgen dots could be employed both for imaging-guided tumor surgery of early-stage tumors and for ‘downstaging’ intention to reduce the size. Moreover, the therapeutic strategy induced complete inhibition of orthotopic tumors without recurrence and with few side effects. Graphical Abstract


Nano Research ◽  
2015 ◽  
Vol 8 (5) ◽  
pp. 1637-1647 ◽  
Author(s):  
Feng Hu ◽  
Chunyan Li ◽  
Yejun Zhang ◽  
Mao Wang ◽  
Dongming Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document