scholarly journals Badania georadarowe kemów jako przykład możliwości zastosowania metod geofizycznych do badania form zbudowanych z drobnoziarnistych osadów klastycznych = GPR surveys of kame hills as an example of geophysical methods being applied to the study of forms built of fine grained clastic sediments

2020 ◽  
Vol 92 (3) ◽  
pp. 423-446
Author(s):  
Piotr Lamparski

The Ground Penetrating Radar (GPR) method potentially offers many possibilities for fast and reliable lithostratigraphic sediment models to be developed. From a cognitive point of view, this represents a major simplification and shortening of procedures with which information about sediments can be obtained. And from the point of view of the economy of operations, there can be a significant reduction in costs and time of research in shallow geology and the stratigraphy of areas where unconsolidated clastic sediments are of superficial occurrence. Also noteworthy is the possibility for the results of GPR surveys to be deployed in support of geological mapping, as well as in the shallow exploration of resources and hydrogeological studies.The most major advantage of the GPR method related to the possibility of the structure of forms being observed in full shape. In the absence of large outcrops, geophysical prospection of geomorphological forms is helpful, insofar as we are able to translate the results of geophysical surveys into the actual lithostratigraphic system of sediments building a specific form.Against that background, the research presented in this article forms part of the work to develop radar stratigraphy, as an important support for direct geological research (Huggenberger et al., 1994; Van Overmeeren, 1998; Beres et al., 1999, Overgaard and Jakobsen, 2001; Jakobsen and Overgaard, 2002; Neal, 2004; Lejzerowicz et al., 2014; Żuk and Sambrook Smith, 2015; Lejzerowicz et al., 2018). It also points to the research potential of the GPR method in determining the genesis of form. The discussion on the way kames form has been going on in the literature for years (Niewiarowski, 1959; 1961; Karczewski, 1971; Klajnert, 1978; Jaksa, 2003; Terpiłowski, 2008). The studies presented here do not suffice to allow the matter to be determined comprehensively, even though they do provide for verification of the opinions of previous researchers.The area forming the subject of this article is defined by Niewiarowski (1959) as the dead ice zone because of the characteristic set of forms (dead ice moraines, kames and eskers). Like modern researchers (Terpiłowski, 2008), Niewiarowski points to the importance of sub-Quaternary surface elevations in the formation of cracks in the ice sheet, with this leading on to the formation of kame hills above such elevations. This would also seem to have been one of the reasons for the formation in the mass of ice of lakes whose filling with sediment and melting ice walls took the form of kames.The great advantage of the GPR method lies in its ability to recognise macrostructural sediment patterns in glacilimic forms. This diagnosis allows for the high-probability assessment of the genesis of form, especially in the context of its position being determined in the marginal zone of the ice sheet. Also looking extremely promising is the capacity for the thickness of fine clastic sediments lying on till to be determined using GPR. It allows for the determination of the way in which a given form is rooted.Described as they are in brief only, test results for selected sites serve to confirm the great usefulness of the GPR method in the recognition of shallow lithostratigraphy of clastic sediments. Nevertheless, this should not be the only method used to recognise the geological structure of forms and sediments. Significant interpretation ambiguities mean that the GPR method should act in support of direct lithostratigraphic research, not merely serving as an alternative to it. GPR surveys offer a depiction particularly close to the real one – of sediment present in homogeneous sediments in relation to electrical parameters. Sediments ideal for GPR surveys would for example be fine dry sands or silts – and it is precisely these sediments that built most of the investigated kame forms.

2017 ◽  
Vol 63 (241) ◽  
pp. 755-771 ◽  
Author(s):  
KERRY KEY ◽  
MATTHEW R. SIEGFRIED

ABSTRACTSubglacial hydrologic systems in Antarctica and Greenland play a fundamental role in ice-sheet dynamics, yet critical aspects of these systems remain poorly understood due to a lack of observations. Ground-based electromagnetic (EM) geophysical methods are established for mapping groundwater in many environments, but have never been applied to imaging lakes beneath ice sheets. Here, we study the feasibility of passive- and active-source EM imaging for quantifying the nature of subglacial water systems beneath ice streams, with an emphasis on the interfaces between ice and basal meltwater, as well as deeper groundwater in the underlying sediments. We describe a suite of model studies that exam the data sensitivity as a function of ice thickness, water conductivity and hydrologic system geometry for models representative of a subglacial lake and a grounding zone estuary. We show that EM data are directly sensitive to groundwater and can image its lateral and depth extent. By combining the conductivity obtained from EM data with ice thickness and geological structure from conventional geophysical techniques, such as ground-penetrating radar and active seismic surveying, EM data have the potential to provide new insights on the interaction between ice, rock and water at critical ice-sheet boundaries.


2020 ◽  
pp. 11-18
Author(s):  
A.S. Hasanov ◽  
◽  
◽  

Khidirly-Bandovan structures have been studied through geological mapping, structural exploration drilling, geophysical methods (gravimetric, magnetic, electrical, seismic exploration methods) since the 1930s. Small amount of oil from different wells in the upper part of Productive Series (PS) and huge amount of gas fountain from Middle Absheron sediments have been obtained. As the interest to these areas had not decreased, the geophysical surveys continued during further years. Seismic exploration surveys were executed in Bandovan structure via Common Depth Point (CDP) method in 2004, refracted ray method and gravimetric exploration complex in 2006 and 3D seismic exploration works and gravimetric investigations with “Scintrex CG-5 Autograv” devices in 2016, correspondingly. In the result of analysis of distribution characteristics for local gravimetric anomalies, as well as 3D descriptions of new gravimetric data, up-to-date logs on tectonic state of Khidirly-Bandovan structure have been obtained and as the new oil-gas exploration objects, the west and south-west wings of these structures highlighted.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tomasz Maćkowski ◽  
Anna Sowiżdżał ◽  
Anna Wachowicz-Pyzik

The geothermal waters constitute a specific type of water resources, very important from the point of view of their thermal energy potential. This potential, when utilized, supplies an ecological and renewable energy, which, after effective development, brings many environmental, social, and industrial benefits. The key element of any geothermal investment is the proper location of geothermal installation, which would guarantee the relevant hydrogeothermal parameters of the water intake. Hence, many studies and analyses are carried out in order to characterize the reservoir parameters, including the integrated geophysical methods. For decades, the geophysical surveys have been the trusty recognition methods of geological structure and petrophysical parameters of rock formations. Thus, they are widely applied by petroleum industry in exploration of conventional and unconventional (shale gas/oil, tight gas) hydrocarbon deposits. Advances in geophysical methods extended their applicability to many other scientific and industrial branches as, e.g., the seismic survey used in studies of geothermal aquifers. The following paper presents the opportunities provided by seismic methods applied to studies of geothermal resources in the central Poland where the geothermal waters are reservoired in both the Lower Cretaceous and the Lower Jurassic sedimentary successions. The presented results are obtained from a network of seismic profiles. An important advantage of the seismic survey is that they may support the selection of an optimal location of geothermal investment and determination of the geometry of geothermal aquifer. Furthermore, the application of geophysical methods can significantly contribute to the reduction of estimation error of groundwater reservoir temperature.


2016 ◽  
Vol 47 (3) ◽  
pp. 1355
Author(s):  
G. Vargemezis ◽  
N. Diamanti ◽  
I. Fikos ◽  
A. Stampolidis ◽  
Th. Makedon ◽  
...  

Ground penetrating radar (GPR) and electrical resistivity tomography (ERT) surveys have been carried out in the city centre of Thessaloniki (N. Greece), for investigating possible locations of buried building foundations. Geophysical survey has been chosen as a non-destructive investigation method since the area is currently used as a car parking and it is covered by asphalt. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the  subsurface.  Regarding  ERT,  high  resistivity  values  can  be  related  to  buried building remains, while lower resistivity values are more related to the surrounding geological materials. GPR surveying can also indicate man-made structures buried in the ground. Even though the two geophysical methods are affected in different ways by the subsurface conditions, the processed underground images from both techniques revealed great similarity. High resistivity anomalies and distinct GPR signals were observed in certain locations of the area under investigation, which are attributed to buried building foundations as well as the geological structure of the area.


2021 ◽  
Author(s):  
Ilaria Catapano ◽  
Luigi Capozzoli ◽  
Giovanni Ludeno ◽  
Gianluca Gennarelli ◽  
Gregory De Martino ◽  
...  

<p>Nowadays, non-invasive sensing technologies working at different spatial scales represent a recognized tool to support archaeological researches, because their deployment and cooperative use allow detection and localization of buried ruins before performing excavation. Therefore, they get significant advantages in planning the stratigraphic assays, while reducing costs and times, and support holistic approaches where cultural heritage management, protection and fruition aspects are considered under a unified context.</p><p>As a further example among those available in literature, this communication summarizes a successful case study carried out at the Archaeological site of Paestum, sited in the southern Italy [1].</p><p>Based on the analysis of aerial imagery and several unexpected archaeological findings, terrestrial measurement campaigns, involving magnetometer (MGA) [2] and ground penetrating radar (GPR) [3] methodologies, were carried out in the northwest quarter of the ancient city near the fortification wall and few meters away from the gate of Porta Marina. As detailed in [4], the MGA was exploited to investigate a large subsurface area in a relatively short time and allowed the identification of the most significant archaeological anomalies, by accounting for the variations of the earth magnetic field due to the different magnetic susceptibilities of construction materials and the magnetic characteristics of the shallow subsoil. The georeferenced MGA image was exploited to select the area requiring a further and more detailed survey, which was performed by means of GPR. Then, GPR data were processed by means of a microwave tomography based approach [4], which allowed a high resolution three dimensional reconstruction of buried targets starting from the electromagnetic field that they backscatter when illuminated by a known incident field. By doing so, detailed information about depth, shape, and orientation of the buried targets were retrieved and an impressive visualization of the the basement of the structure was achieved.</p><p>The area is currently under excavation and the initial discovered ruins fully confirm the hypotheses formulated on the basis of the elements found on the surface, the photo interpretations and geophysical investigations. The proposed reconstructive hypothesis of the building as a whole is a stylobate of 10.83 m x 6.80 on which 4 x 7 columns were arranged, with a significantly increased intercolumniation on the short sides (2.02 m) compared to the long sides (1.68 m).</p><p>[1] https://www.museopaestum.beniculturali.it/?lang=en</p><p>[2] A. Aspinall, C. Gaffney, A. Schmidt, A Magnetometry for archaeologists. Geophysical methods for archaeology, Altamira Press, Lanham, (2008).</p><p>[3] D. J. Daniels, Ground penetrating radar, IET, (2004).</p><p>[4] Capozzoli, L.; Catapano, I.; De Martino, G.; Gennarelli, G.; Ludeno, G.; Rizzo, E.; Soldovieri, F.; Uliano Scelza, F.; Zuchtriegel, G. The Discovery of a Buried Temple in Paestum: The Advantages of the Geophysical Multi-Sensor Application. Remote Sens. 2020, 12, 2711.</p>


Author(s):  
Radosław Pikies

Glaciotectonic and neotectonic processes are among the key factors influencing the geological structure of the Elbląg Elevation. The former is undoubtedly interrelated with the latter. Intensity and scale of glaciotectonic processes were for the first time examined from the point of view of transgression dynamics of the Vistulian continental glaciers, advancing from the Baltic Sea area. Geological structure, morphology and bathymetry of the eastern part of the Central Baltic Sea bottom show that main elements of the dynamics were shaped in this area. The diversified dynamics resulted in the formation of ice streams, carrying the major part of ice mass out of the ice sheet. It also caused that the advance of the ice sheet over the Polish Lowlands was not synchronous and occurred with various intensity. The Elbląg Elevation was subjected to these rules, because it was the first to be situated within the diverse force of interaction field with ice stream B3 (streams according to Punkari, 1997), advancing towards the Polish Lowlands from the area of a submeridional megadepression of the Gotland Deep and the Gdańsk Deep (south-eastern part of Central Baltic Sea). As regards the Elbląg Elevation area, an evaluation of the scale and intensity of glaciotectonic processes in time has been performed. Especially strong glaciotectonic disturbances, appearing on the western slope of this elevation, have been related to the presence of the distinct, submeridionally oriented fault zone Iława–Elbląg (its northern part), which coincides with the western boundary of this elevation. The likely reason for the development of glaciotectonic deformation during the middle and upper parts of the Vistula Glaciation might habve been the change of the regime of neotectonic stress field, operating within the broad foreland of the Kuyavian-Pomeranian Swell, which probably took place at the end of the Eemian Interglacial.


2016 ◽  
Vol 47 (3) ◽  
pp. 1355
Author(s):  
G. Vargemezis ◽  
N. Diamanti ◽  
I. Fikos ◽  
A. Stampolidis ◽  
Th. Makedon ◽  
...  

Ground penetrating radar (GPR) and electrical resistivity tomography (ERT) surveys have been carried out in the city centre of Thessaloniki (N. Greece), for investigating possible locations of buried building foundations. Geophysical survey has been chosen as a non-destructive investigation method since the area is currently used as a car parking and it is covered by asphalt. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the  subsurface.  Regarding  ERT,  high  resistivity  values  can  be  related  to  buried building remains, while lower resistivity values are more related to the surrounding geological materials. GPR surveying can also indicate man-made structures buried in the ground. Even though the two geophysical methods are affected in different ways by the subsurface conditions, the processed underground images from both techniques revealed great similarity. High resistivity anomalies and distinct GPR signals were observed in certain locations of the area under investigation, which are attributed to buried building foundations as well as the geological structure of the area.


2021 ◽  
Vol 43 (5) ◽  
pp. 3-18
Author(s):  
V. Shestopalov ◽  
O. Lukin ◽  
V. Starostenko ◽  
O. Ponomarenko ◽  
T. Tsvetkova ◽  
...  

This paper shows the prospect to find industrial-scale hydrogen accumulations in riftogenic structures of platforms using the example of the Dnieper-Donets Aulacogene, located in the southern part of the East European Platform. Within the Dnieper-Donets Depression, geological and geophysical methods indicate a significant number of deep faults and ring structures of volcanogenic and explosive origin promising increased hydrogen content. Possible locations of the most propitious areas of hydrogen concentration are associated with faults in rift systems and their nearest margins, as well as with explosive and volcanogenic ring structures with signs of modern activation. At a fine-grained level, the prospectivity of the area is determined not only by the specified structural relationship, but also by the set of geophysical characteristics (thermal, seismic, gravity, electrical conductivity, magnetic) and the corresponding geological and hydrogeological parameters. Areas for further more detailed investigations within the Sribne and other ring structures, Southern Near-Edge Fault, Northern Near-Edge Fault were identified based on the data on geological and geophysical materials, satellite images, and field work. We defined high-priority and low-priority territories. Areas for initial investigations using satellite images, gas sampling (hydrogen, helium, methane, etc.), primary geophysical surveys (with evaluation of intermediate reservoirs and cap rocks) were identified. The primary results can be used to plan pilot shallow drilling and wells sampling. The areas for priority deeper drilling and sampling are selected by the sum of results obtained and data comparison. The paper presents the results obtained 30 km east of Kyiv as an example of field assessment of H2 degassing in a local depression. The results show that hydrogen concentrations at depths of 0.45 to 1.5 m are near zero outside the local depression. The maximum values of H2 concentration (up to 3300 ppm 1.5 m deep) are characteristic of the point inside the depression.


2020 ◽  
Author(s):  
Gregory De Martino ◽  
Luigi Capozzoli ◽  
Valeria Giampaolo ◽  
Enzo Rizzo

<p>In Europe, there are many abandoned railway tunnels. These structures are generally placed in mountainous or hardly accessible territories, where their use was no longer necessary for the improvement of the road communications and the favourite use of the private car. However, in some cases, they could be an important point of observation to monitor the mountains, where important hydrogeological resource are located. This is the case of an old tunnel sited in Marsico Nuovo village, where the rail way “Atena-Marsico Nuovo” was realized in the early 20th century and worked until the in ’60. The studied tunnel has a total length of 1229 m and, from geological point of view, it is located in the carbonate complex of the Maddalena Mountains and is characterized by the presence of stratified and fractured carbonate rocks. In proximity of this structure, there is also an important karstic cave (Castel di Lepre) already subject to geophysical measurements realized in the past [1]. The presence of a tunnel offers an advantageous perspective to monitor the aquifer improving the knowledge of the fluid circulation in a carbonate rock formation [2].</p><p>However, no engineering and geotechnical information about the realization of the construction and the geological setting of the area are available. In order to characterize, from an engineering point of view, the correlation between the hydrogeological formation and the engineering structure, several geophysical surveys, based on electric and electromagnetic acquisitions, were carried out along the gallery. The results obtained show the potentialities of the geophysical methods for monitoring and characterizing engineering structures also providing useful and detailed information for the identification of shallower geological structures in the first meters surrounding the tunnel. </p><p> </p><p> </p><p> </p><p>References </p><p>[1] E. Rizzo, M. Guerriero, E. Gueguen, <strong>L. Capozzoli</strong>, G. De Martino and F. Perciante, Cave-surface Electrical Resistivity Tomography in “Castello di Lepre” Karst System (Marsico Nuovo, Southern Italy),  Monitoring and Characterization of the Shallow Subsurface I, EAGE 2017, DOI: 10.3997/2214-4609.201702078; </p><p>[2] M. Guerriero, L. Capozzoli, G. De Martino, V. Giampaolo, E. Rizzo, F. Canora and F. Sdao, Geophysical techniques for monitoring carbonate karstic rocks (2019), Italian Journal of Engineering Geology and Environment, DOI: 10.4408/IJEGE.2019-01.S-10; Project: Landslide Risk Assessment along roads (LaRIS), Special Issue 1 (2019) Sapienza Università Editrice. </p>


2018 ◽  
Vol 66 ◽  
pp. 01022 ◽  
Author(s):  
Monika Łój ◽  
Sławomir Porzucek ◽  
Tomisław Gołębiowski ◽  
Mark E. Everett

Selected results of complex geophysical surveys carried out on the Vistula river flood levee in Cracow are herein presented. Two complementary geophysical methods were applied for detection of potential unconsolidated zones in the body of the levee, i.e. microgravimetry and ground-penetrating radar (GPR). The surveys were carried out in 2D mode, along a profile at the crown of the flood levee. Microgravimetric data reveal anomalies showing zones of decreased bulk density. These zones provide information about poor quality of the levee. The main anomaly was interpreted in a quantitative manner using gravity modelling. Non-standard GPR processing and visualization of radargrams were employed to better extract information concerning the distribution of unconsolidated zones. High resolution GPR surveys allow to outline such zones which was the basis for construction of the 2D model used in the gravimetric modelling. Integration of these two geophysical methods provided important information about the spatial variations of mass density in several unconsolidated zones within the body of the flood levee.


Sign in / Sign up

Export Citation Format

Share Document