scholarly journals Preliminary design of an Initial Test of Integrated Skills within TRADILEX: an ongoing project on the validity of audiovisual translation tools in teaching English

Author(s):  
Pilar Couto-Cantero ◽  
Mariona Sabaté-Carrové ◽  
María Carmen Gómez Pérez

This article shows the preliminary design process for a tailor-made Initial Test of Integrated Skills (ITIS) specially adapted to the needs of TRADILEX, a project (2020-2023) funded by the Spanish Ministry of Science, Innovation and Universities to study the scope and validity of using audiovisual translation (AVT) tools to develop communicative competence in a foreign language. We also design a complete virtual AVT-based teaching platform that will help to promote faster and better EFL learning. In this paper we present one of the project’s initial stages, i.e. the ITIS design and the methodological framework for the design process from draft stage to final product. The draft pilot ITIS was tested by specialists, who produced a series of reports and anticipated several potential problems that occurred when the test was carried out. We pay special attention to the changes and improvements made to the draft ITIS as well as its three-stage process and remedial measures. The validity of the ITIS is currently being tested with a pilot group. The ITIS will be complemented with a Final Test of Integrated Skills (FITIS), which is currently underway.

Author(s):  
Jan Schumann ◽  
Ulrich Harbecke ◽  
Daniel Sahnen ◽  
Thomas Polklas ◽  
Peter Jeschke ◽  
...  

The subject of the presented paper is the validation of a design method for HP and IP steam turbine stages. Common design processes have been operating with simplified design methods in order to quickly obtain feasible stage designs. Therefore, inaccuracies due to assumptions in the underlying methods have to be accepted. The focus of this work is to quantify the inaccuracy of a simplified design method compared to 3D Computational Fluid Dynamics (CFD) simulations. Short computing time is very convenient in preliminary design; therefore, common design methods work with a large degree of simplification. The origin of the presented analysis is a mean line design process, dealing with repeating stage conditions. Two features of the preliminary design are the stage efficiency, based on loss correlations, and the mechanical strength, obtained by using the beam theory. Due to these simplifications, only a few input parameters are necessary to define the primal stage geometry and hence, the optimal design can easily be found. In addition, by using an implemented law to take the radial equilibrium into account, the appropriate twist of the blading can be defined. However, in comparison to the real radial distribution of flow angles, this method implies inaccuracies, especially in regions of secondary flow. In these regions, twisted blades, developed by using the simplified radial equilibrium, will be exposed to a three-dimensional flow, which is not considered in the design process. The analyzed design cases show that discrepancies at the hub and shroud section do exist, but have minor effects. Even the shroud section, with its thinner leading-edge, is not vulnerable to these unanticipated flow angles.


1983 ◽  
Author(s):  
George S. Hazen ◽  
Steve Killing

From the perspective of the design office, this paper examines the manner in which computers are streamlining and changing the design process for today's sailing yachts. Starting with preliminary design and progressing through the more detailed aspects of final design, the computer's varying roles in the design process are traced with examples drawn from currently implemented programs. In addition to its customary role as a bookkeeper, the computer's remarkable graphics capabilities are highlighted. The authors offer a glimpse of what programs and hardware tomorrow's yacht designer will use as frequently as his curves and battens. The paper covers such subjects as design follow-up, sailing analysis and feedback into the original design process. Since designers are not the only ones to benefit from the computer revolution, the authors have included sections on computer generated sailing aids for the yachtsman and possible CAD/CAM applications for the boatbuilder.


Author(s):  
William S. Law ◽  
Erik K. Antonsson

Abstract The preliminary design process is characterized by imprecision: the vagueness of an incomplete design description. The Method of Imprecision uses the mathematics of fuzzy sets to explicitly represent and manipulate imprecise preliminary design information, enabling the designer to explore the space of alternative designs in the context of the designer and customer’s preferences among alternatives. This paper introduces new methods to perform Method of Imprecision calculations for general non-monotonic design evaluation functions that address the practical necessity to minimize the number of function evaluations. These methods utilize optimization and experiment design.


Author(s):  
Tamás Orosz ◽  
David Pánek ◽  
Pavel Karban

Since large power transformers are custom-made, and their design process is a labor-intensive task, their design process is split into different parts. In tendering, the price calculation is based on the preliminary design of the transformer. Due to the complexity of this task, it belongs to the most general branch of discrete, non-linear mathematical optimization problems. Most of the published algorithms are using a copper filling factor based winding model to calculate the main dimensions of the transformer during this first, preliminary design step. Therefore, these cost optimization methods are not considering the detailed winding layout and the conductor dimensions. However, the knowledge of the exact conductor dimensions is essential to calculate the thermal behaviour of the windings and make a more accurate stray loss calculation. The paper presents a novel, evolutionary algorithm-based transformer optimization method which can determine the optimal conductor shape for the windings during this examined preliminary design stage. The accuracy of the presented FEM method was tested on an existing transformer design. Then the results of the proposed optimization method have been compared with a validated transformer design optimization algorithm.


Author(s):  
Fengping Huang

In order to improve the diversified teaching effect of a college aerobics course, effectively improve the accuracy of student grouping on the teaching platform, a diversified teaching platform of college aerobics course based on artificial intelligence is designed. First of all, it puts forward the construction idea and design process of the network teaching platform, then designs the interface and function module of the teaching platform, and finally designs the grouping function of teaching objects, so as to complete the design of the diversified teaching platform of a college aerobics course based on artificial intelligence. The experimental results show that the grouping accuracy of students on the diversified teaching platform of college aerobics course based on artificial intelligence is greater than 75%, and the average score of students studying on the platform is 74.66. This explains why the designed platform can effectively provide the accuracy of grouping and the students’ performance.


2020 ◽  
Vol 1 ◽  
pp. 587-596
Author(s):  
T. Herrmann ◽  
D. Roth ◽  
H. Binz

AbstractOne challenge within idea management of the front end of the design process is the handling of radical ideas, meaning ideas with a high degree of novelty. Companies are approaching radical and incremental ideas frequently with the same methods, although many reasoned claims exists for treating ideas differently according to the degree of novelty. The paper aims to address the fact that ambidexterity does not play any specific role in the front end. Therefore, a framework of an extended idea process model based on the idea of ambidexterity is shown and initial test results are presented.


Author(s):  
Maxime Moret ◽  
Alexandre Delecourt ◽  
Hany Moustapha ◽  
Francois Garnier ◽  
Acher-Igal Abenhaim

The use of Multidisciplinary Design Optimization (MDO) techniques at the preliminary design phase (PMDO) of a gas turbine engine allows investing more effort at the pre-detailed phase in order to prevent the selection of an unsatisfactory concept early in the design process. Considering the impact of the turbine tip clearance on an engine’s efficiency, an accurate tool to predict the tip gap is a mandatory step towards the implementation of a full PMDO system for the turbine design. Tip clearance calculation is a good candidate for PMDO technique implementation considering that it implies various analyses conducted on both the rotor and stator. As a first step to the development of such tip clearance calculator satisfying PMDO principles, the present work explores the automation feasibility of the whole analysis phase of a turbine rotor preliminary design process and the potential increase in the accuracy of results and time gains. The proposed conceptual system integrates a thermal boundary conditions automated calculator and interacts with a simplified air system generator and with several conception tools based on parameterized CAD models. Great improvements were found when comparing this work’s analysis results with regular pre-detailed level tools, as they revealed to be close to the one generated by the detailed design tools used as target. Moreover, this design process revealed to be faster than a common preliminary design phase while leading to a reduction of time spent at the detailed design phase. By requiring fewer user inputs, this system decreases the risk of human errors while entirely leaving the important decisions to the designer.


Sign in / Sign up

Export Citation Format

Share Document