scholarly journals Harmine stimulates neurogenesis of human neural cells in vitro

Author(s):  
Vanja Dakic ◽  
Renata de Moraes Maciel ◽  
Hannah Drummond ◽  
Juliana M Nascimento ◽  
Pablo Trindade ◽  
...  

Harmine is a β-carboline alkaloid present at highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 57%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY) and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of Dyrk1a is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Harmine also increased dendritic arborization, including total neurite length, number of segments, extremities and nodes in MAP2 positive neurons. Our findings show that harmine enhances neurogenesis of hNPCs in vitro, and suggest a biological activity associated with its antidepressant effects in vivo.

2016 ◽  
Author(s):  
Vanja Dakic ◽  
Renata de Moraes Maciel ◽  
Hannah Drummond ◽  
Juliana M Nascimento ◽  
Pablo Trindade ◽  
...  

Harmine is a β-carboline alkaloid present at highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 57%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY) and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of Dyrk1a is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Harmine also increased dendritic arborization, including total neurite length, number of segments, extremities and nodes in MAP2 positive neurons. Our findings show that harmine enhances neurogenesis of hNPCs in vitro, and suggest a biological activity associated with its antidepressant effects in vivo.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2727 ◽  
Author(s):  
Vanja Dakic ◽  
Renata de Moraes Maciel ◽  
Hannah Drummond ◽  
Juliana M. Nascimento ◽  
Pablo Trindade ◽  
...  

Harmine is theβ-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY), and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferationin vitroand antidepressant effectsin vivo.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 716
Author(s):  
Keziban Korkmaz Bayram ◽  
Juliette Fitremann ◽  
Arslan Bayram ◽  
Zeynep Yılmaz ◽  
Ecmel Mehmetbeyoğlu ◽  
...  

Background: N-heptyl-D-galactonamide (GalC7) is a small synthetic carbohydrate derivative that forms a biocompatible supramolecular hydrogel. In this study, the objective was to analyze more in-depth how neural cells differentiate in contact with GalC7. Method: Direct (ex vivo) cells of the fresh hippocampus and culture (In vitro) of the primary cells were investigated. In vitro, investigation performed under three conditions: on culture in neurospheres for 19 days, on culture in GalC7 gel for 7 days, and on culture in both neurospheres and GalC7 gel. Total RNA was isolated with TRIzol from each group, Sox8, Sox9, Sox10, Dcx, and Neurod1 expression levels were measured by qPCR. Result: Sox8 and Sox10, oligodendrocyte markers, and Sox9, an astrocyte marker, were expressed at a much higher level after 7 days of culture in GalC7 hydrogel compared to all other conditions. Dcx, a marker of neurogenesis, and Neurod1, a marker of neuronal differentiation, were expressed at better levels in the GalC7 gel culture compared to the neurosphere. Conclusions: These results show that the GalC7 hydrogel brings different and interesting conditions for inducing the differentiation and maturation of neural progenitor cells compared with polymer-based scaffolds or cell-only conditions. The differences observed open new perspectives in tissue engineering, induction, and transcript analysis.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Maria C Marchetto ◽  
Branka Hrvoj-Mihic ◽  
Bilal E Kerman ◽  
Diana X Yu ◽  
Krishna C Vadodaria ◽  
...  

Comparative analyses of neuronal phenotypes in closely related species can shed light on neuronal changes occurring during evolution. The study of post-mortem brains of nonhuman primates (NHPs) has been limited and often does not recapitulate important species-specific developmental hallmarks. We utilize induced pluripotent stem cell (iPSC) technology to investigate the development of cortical pyramidal neurons following migration and maturation of cells grafted in the developing mouse cortex. Our results show differential migration patterns in human neural progenitor cells compared to those of chimpanzees and bonobos both in vitro and in vivo, suggesting heterochronic changes in human neurons. The strategy proposed here lays the groundwork for further comparative analyses between humans and NHPs and opens new avenues for understanding the differences in the neural underpinnings of cognition and neurological disease susceptibility between species.


2004 ◽  
Vol 13 (5) ◽  
pp. 535-548 ◽  
Author(s):  
Ming Yang ◽  
Angela E. Donaldson ◽  
Cheryl E. Marshall ◽  
James Shen ◽  
Lorraine Iacovitti

2021 ◽  
Author(s):  
Sebastian Peters ◽  
Sabrina Kuespert ◽  
Eva Wirkert ◽  
Rosmarie Heydn ◽  
Benjamin Jurek ◽  
...  

AbstractAdult neurogenesis is a target for brain rejuvenation as well as regeneration in aging and disease. Numerous approaches showed efficacy to elevate neurogenesis in rodents, yet translation into therapies has not been achieved. Here, we introduce a novel human TGFβ-RII (Transforming Growth Factor—Receptor Type II) specific LNA-antisense oligonucleotide (“locked nucleotide acid”—“NVP-13”), which reduces TGFβ-RII expression and downstream receptor signaling in human neuronal precursor cells (ReNcell CX® cells) in vitro. After we injected cynomolgus non-human primates repeatedly i.th. with NVP-13 in a preclinical regulatory 13-week GLP-toxicity program, we could specifically downregulate TGFβ-RII mRNA and protein in vivo. Subsequently, we observed a dose-dependent upregulation of the neurogenic niche activity within the hippocampus and subventricular zone: human neural progenitor cells showed significantly (up to threefold over control) enhanced differentiation and cell numbers. NVP-13 treatment modulated canonical and non-canonical TGFβ pathways, such as MAPK and PI3K, as well as key transcription factors and epigenetic factors involved in stem cell maintenance, such as MEF2A and pFoxO3. The latter are also dysregulated in clinical neurodegeneration, such as amyotrophic lateral sclerosis. Here, we provide for the first time in vitro and in vivo evidence for a novel translatable approach to treat neurodegenerative disorders by modulating neurogenesis.


2020 ◽  
Vol 54 (01) ◽  
pp. 37-46
Author(s):  
Kristina Friedland ◽  
Giacomo Silani ◽  
Anita Schuwald ◽  
Carola Stockburger ◽  
Egon Koch ◽  
...  

Abstract Background Silexan, a special essential oil from flowering tops of lavandula angustifolia, is used to treat subsyndromal anxiety disorders. In a recent clinical trial, Silexan also showed antidepressant effects in patients suffering from mixed anxiety-depression (ICD-10 F41.2). Since preclinical data explaining antidepressant properties of Silexan are missing, we decided to investigate if Silexan also shows antidepressant-like effects in vitro as well as in vivo models. Methods We used the forced swimming test (FST) in rats as a simple behavioral test indicative of antidepressant activity in vivo. As environmental events and other risk factors contribute to depression through converging molecular and cellular mechanisms that disrupt neuronal function and morphology—resulting in dysfunction of the circuitry that is essential for mood regulation and cognitive function—we investigated the neurotrophic properties of Silexan in neuronal cell lines and primary hippocampal neurons. Results The antidepressant activity of Silexan (30 mg/kg BW) in the FST was comparable to the tricyclic antidepressant imipramine (20 mg/kg BW) after 9-day treatment. Silexan triggered neurite outgrowth and synaptogenesis in 2 different neuronal cell models and led to a significant increase in synaptogenesis in primary hippocampal neurons. Silexan led to a significant phosphorylation of protein kinase A and subsequent CREB phosphorylation. Conclusion Taken together, Silexan demonstrates antidepressant-like effects in cellular as well as animal models for antidepressant activity. Therefore, our data provides preclinical evidence for the clinical antidepressant effects of Silexan in patients with mixed depression and anxiety.


Development ◽  
1991 ◽  
Vol 113 (Supplement_2) ◽  
pp. 105-122 ◽  
Author(s):  
Marysia Placzek ◽  
Toshiya Yamada ◽  
Marc Tessier-Lavigne ◽  
Thomas Jessell ◽  
Jane Dodd

Distinct classes of neural cells differentiate at specific locations within the embryonic vertebrate nervous system. To define the cellular mechanisms that control the identity and pattern of neural cells we have used a combination of functional assays and antigenic markers to examine the differentiation of cells in the developing spinal cord and hindbrain in vivo and in vitro. Our results suggest that a critical step in the dorsoventral patterning of the embryonic CNS is the differentiation of a specialized group of midline neural cells, termed the floor plate, in response to local inductive signals from the underlying notochord. The floor plate and notochord appear to control the pattern of cell types that appear along the dorsoventral axis of the neural tube. The fate of neuroepithelial cells in the ventral neural tube may be defined by cell position with respect to the ventral midline and controlled by polarizing signals that originate from the floor plate and notochord.


2017 ◽  
Author(s):  
Nicola J. Drummond ◽  
Nick O. Davies ◽  
Janet E. Lovett ◽  
Mark R. Miller ◽  
Graeme Cook ◽  
...  

AbstractExcessive reactive oxygen species (ROS) can damage proteins, lipids, and DNA, which result in cell damage and death. The outcomes can be acute, as seen in stroke, or more chronic as observed in age-related diseases such as Parkinson’s disease. Here we investigate the antioxidant ability of a novel synthetic flavonoid, Proxison (7-decyl-3-hydroxy-2-(3,4,5-trihydroxyphenyl)-4-chromenone), using a range of in vitro and in vivo approaches. We show that, while it has radical scavenging ability on par with other flavonoids in a cell-free system, Proxison is orders of magnitude more potent than natural flavonoids at protecting neural cells against oxidative stress and is capable of rescuing damaged cells. The unique combination of a lipophilic hydrocarbon tail with a modified polyphenolic head group promotes efficient cellular uptake and mitochondrial localisation of Proxison. Importantly, in vivo administration of Proxison demonstrated effective and well tolerated neuroprotection against oxidative stress in a zebrafish model of dopaminergic neuronal loss.


2002 ◽  
Vol 383 (5) ◽  
pp. 785-791 ◽  
Author(s):  
Satavisha Dutta ◽  
Yuk Chun Chiu ◽  
Albert W. Probert ◽  
Kevin K.W. Wang

Abstract Activation of calpain results in the breakdown of α II spectrin (αfodrin), a neuronal cytoskeleton protein, which has previously been detected in various in vitro and in vivo neuronal injury models. In this study, a 150 kDa spectrin breakdown product (SBDP150) was found to be released into the cellconditioned media from SHSY5Y cells treated with the calcium channel opener maitotoxin (MTX). SBDP150 release can be readily quantified on immunoblot using an SBDP150- specific polyclonal antibody. Increase of SBDP150 also correlated with cell death in a timedependent manner. MDL28170, a selective calpain inhibitor, was the only protease inhibitor tested that significantly reduced MTXinduced SBDP150 release. The cellconditioned media of cerebellar granule neurons challenged with excitotoxins (NMDA and kainate) also exhibited a significant increase of SBDP150 that was attenuated by pretreatment with an NMDA receptor antagonist, R()-3-(2-carbopiperazine-4-yl)propyl-1- phosphonic acid (CPP), and MDL28170. In addition, hypoxic/hypoglycemic challenge of cerebrocortical cultures also resulted in SBDP150 liberation into the media. These results support the theory that an antibody based detection of SBDP150 in the cellconditioned media can be utilized to quantify injury to neural cells. Furthermore, SBDP150 may potentially be used as a surrogate biomarker for acute neuronal injury in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document