scholarly journals Expression of matrix metalloproteinases to induce the expression of genes associated with apoptosis during corpus luteum development in bovine

Author(s):  
Sang Hwan Kim ◽  
Ji Hye Lee ◽  
Jong Taek Yoon

Here we investigated the expressions of apoptosis-associated genes known to induce programmed cell death through mRNA expressions of two matrix metalloproteinases (MMPs) that are involved in the degradation of collagen and basal membrane in luteal cells cultured in the treatment media. Our results show that the activity of MMP-2 gelatinase was higher in the CL2 and CL1 of luteal phase, was gradually decreased in the CH2 and CH3 of luteal phase. In particular, the expressions of P4-r and survival-associated genes (IGFr, PI3K, AKT, and mTOR) were strongly induced during CL3 stage, whereas the levels of these genes in CL were lower during CL2 and CL1 stages. And in the cultured lutein cell analyzed result, we found that as MMPs increase, genes related to apoptosis ( 20α-HSD and Casp-3) also increase. In other words, the results for P4-r and survival-related gene expression patterns in the luteal cells were contrary to the MMPs activation results. These results indicate that active MMPs are differentially expressed to induce the expression of genes associated with programmed cell death from the degrading luteal cells. Therefore, our results suggest that the MMPs activation may lead to luteal cell development or death.

2018 ◽  
Author(s):  
Sang Hwan Kim ◽  
Ji Hye Lee ◽  
Jong Taek Yoon

Here we investigated the expressions of apoptosis-associated genes known to induce programmed cell death through mRNA expressions of two matrix metalloproteinases (MMPs) that are involved in the degradation of collagen and basal membrane in luteal cells cultured in the treatment media. Our results show that the activity of MMP-2 gelatinase was higher in the CL2 and CL1 of luteal phase, was gradually decreased in the CH2 and CH3 of luteal phase. In particular, the expressions of P4-r and survival-associated genes (IGFr, PI3K, AKT, and mTOR) were strongly induced during CL3 stage, whereas the levels of these genes in CL were lower during CL2 and CL1 stages. And in the cultured lutein cell analyzed result, we found that as MMPs increase, genes related to apoptosis ( 20α-HSD and Casp-3) also increase. In other words, the results for P4-r and survival-related gene expression patterns in the luteal cells were contrary to the MMPs activation results. These results indicate that active MMPs are differentially expressed to induce the expression of genes associated with programmed cell death from the degrading luteal cells. Therefore, our results suggest that the MMPs activation may lead to luteal cell development or death.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6344
Author(s):  
Sang Hwan Kim ◽  
Ji Hye Lee ◽  
Jong Taek Yoon

Here we investigated the expressions of apoptosis-associated genes known to induce programed cell death through mRNA expressions of two matrix metalloproteinases (MMPs) that are involved in the degradation of collagen and basal membrane in luteal cells cultured in the treatment media. Our results show that the activity of MMP-2 gelatinase was higher in the CL2 and CL1 of luteal phase, was gradually decreased in the CH2 and CH3 of luteal phase. In particular, the expressions of P4-r and survival-associated genes (IGFr, PI3K, AKT, and mTOR) were strongly induced during CL3 stage, whereas the levels of these genes in corpus luteum (CL) were lower during CL2 and CL1 stages. In the cultured lutein cells analyzed, we found that as MMPs increase, genes related to apoptosis (20α-hydroxy steroid dehydrogenase and caspase-3) also increase. In other words, the results for P4-r and survival-related gene expression patterns in the luteal cells were contrary to the MMPs activation results. These results indicate that active MMPs are differentially expressed to induce the expression of genes associated with programed cell death from the degrading luteal cells. Therefore, our results suggest that the MMPs activation may lead to luteal cell development or death.


2020 ◽  
Vol 71 (16) ◽  
pp. 4812-4827 ◽  
Author(s):  
Mei Bai ◽  
Minjian Liang ◽  
Bin Huai ◽  
Han Gao ◽  
Panpan Tong ◽  
...  

Abstract The secretory cavity is a typical structure in Citrus fruit and is formed by schizolysigeny. Previous reports have indicated that programmed cell death (PCD) is involved in the degradation of secretory cavity cells in the fruit, and that the spatio-temporal location of calcium is closely related to nuclear DNA degradation in this process; however, the molecular mechanisms underlying this Ca2+ regulation remain largely unknown. Here, we identified CgCaN that encodes a Ca2+-dependent DNase in the fruit of Citrus grandis ‘Tomentosa’, the function of which was studied using calcium ion localization, DNase activity assays, in situ hybridization, and protein immunolocalization. The results suggested that the full-length cDNA of CgCaN contains an ORF of 1011 bp that encodes a protein 336 amino acids in length with a SNase-like functional domain. CgCaN digests dsDNA at neutral pH in a Ca2+-dependent manner. In situ hybridization signals of CgCaN were particularly distributed in the secretory cavity cells. Ca2+ and Ca2+-dependent DNases were mainly observed in the condensed chromatin and in the nucleolus. In addition, spatio-temporal expression patterns of CgCaN and its protein coincided with the time-points that corresponded to chromatin degradation and nuclear rupture during the PCD in the development of the fruit secretory cavity. Taken together, our results suggest that Ca2+-dependent DNases play direct roles in nuclear DNA degradation during the PCD of secretory cavity cells during Citrus fruit development. Given the consistency of the expression patterns of genes regulated by calmodulin (CaM) and calcium-dependent protein kinases (CDPK) and the dynamics of calcium accumulation, we speculate that CaM and CDPK proteins might be involved in Ca2+ transport from the extracellular walls through the cytoplasm and into the nucleus to activate CgCaN for DNA degradation.


2006 ◽  
Vol 5 (12) ◽  
pp. 2161-2173 ◽  
Author(s):  
Karine Dementhon ◽  
Gopal Iyer ◽  
N. Louise Glass

ABSTRACT Nonself recognition during somatic growth is an essential and ubiquitous phenomenon in both prokaryotic and eukaryotic species. In filamentous fungi, nonself recognition is also important during vegetative growth. Hyphal fusion between genetically dissimilar individuals results in rejection of heterokaryon formation and in programmed cell death of the fusion compartment. In filamentous fungi, such as Neurospora crassa, nonself recognition and heterokaryon incompatibility (HI) are regulated by genetic differences at het loci. In N. crassa, mutations at the vib-1 locus suppress nonself recognition and HI mediated by genetic differences at het-c/pin-c, mat, and un-24/het-6. vib-1 is a homolog of Saccharomyces cerevisiae NDT80, which is a transcriptional activator of genes during meiosis. For this study, we determined that vib-1 encodes a nuclear protein and showed that VIB-1 localization varies during asexual reproduction and during HI. vib-1 is required for the expression of genes involved in nonself recognition and HI, including pin-c, tol, and het-6; all of these genes encode proteins containing a HET domain. vib-1 is also required for the production of downstream effectors associated with HI, including the production of extracellular proteases upon carbon and nitrogen starvation. Our data support a model in which mechanisms associated with starvation and nonself recognition/HI are interconnected. VIB-1 is a major regulator of responses to nitrogen and carbon starvation and is essential for the expression of genes involved in nonself recognition and death in N. crassa.


Reproduction ◽  
2002 ◽  
pp. 67-77 ◽  
Author(s):  
MO Al-Zi'abi ◽  
HM Fraser ◽  
ED Watson

In mares, little information is available on the type of cell death that occurs during natural and induced luteal regression. Corpora lutea were collected from mares in the early luteal phase, days 3-4 (n = 4); mid-luteal phase, day 10 (n = 5); early regression, day 14 (n = 4); late regression, day 17 (n = 4); and 12 and 36 h (n = 3 per group) after PGF2alpha administration on day 10. Histological and ultrastructural sections were examined and TUNEL was used to detect DNA fragmentation. In early luteal regression, there were more pyknotic luteal cells and extracellular round dense bodies compared with the mid-luteal phase. By late regression, there was a significant decline (P < 0.01) in the number of round dense body clusters and a marked accumulation of lipid. Twelve and 36 h after PGF2alpha administration, changes were similar to those seen in natural regression, but there was also a marked infiltration of neutrophils. Accumulation of lipid was not apparent until 36 h after PGF2alpha administration. Ultrastructural examination revealed rarefaction and distortion of the mitochondrial cristae in most of the luteal cells by the mid-luteal phase. Luteal cells showed shrinkage, accumulation of lipid with foamy appearance, and disruption in both smooth endoplasmic reticulum and mitochondria during natural and induced regression. Some luteal cells showed fragmented or pyknotic chromatin characteristic of apoptosis. Other luteal cells showed crenation of the nuclear membrane and shrinkage of the nucleus, features not characteristic of apoptotic cell death. In late regression, capillaries were obstructed by swollen endothelial cells and round dense bodies. These results show that structural regression may be initiated as early as the mid-luteal phase, and is clearly visible by day 14 in natural regression and 12 h after induced regression. Apoptosis did appear to be involved in luteolysis in the equine corpus luteum, but non-apoptotic changes were also observed in some luteal cells during regression. Accumulation of lipid was a late feature of luteal regression.


1989 ◽  
Vol 122 (1) ◽  
pp. 303-NP ◽  
Author(s):  
B. Fisch ◽  
R. A. Margara ◽  
R. M. L. Winston ◽  
S. G. Hillier

ABSTRACT A primary monolayer cell culture system was developed to investigate human corpus luteum (CL) function in vitro. Steroidogenic cells were isolated by collagenase dispersal and Percoll density-gradient fractionation from CLs enucleated at progressive stages of the luteal phase (tubal surgery patients). 'Pure' granulosa-lutein cells were aspirated from ovulatory follicles at mid-cycle (in-vitro fertilization patients). The steroidogenic capacity (progesterone/20α-dihydroprogesterone biosynthesis and aromatase activity) of isolated luteal cells was assessed in relation to CL development. Basal luteal cell steroidogenesis was maximal at around the expected time of ovulation and declined with CL age during the luteal phase. Conversely, human chorionic gonadotrophin (hCG)-responsive steroidogenesis was initially undetectable but developed as the luteal phase progressed. These results show that luteal cell steroidogenesis becomes increasingly dependent upon gonadotrophic support with CL age. This is evidence that functional luteolysis in human ovaries (1) is pre-programmed to occur at the cellular level, (2) is initiated automatically at the time of ovulation and (3) is reversed at the time of CL 'rescue' in early pregnancy by the direct action of trophoblastic hCG on steroidogenic luteal cells. The culture system described should be of value in further defining the control of human CL form and function at the cellular level. Journal of Endocrinology (1989) 122, 303–311


2010 ◽  
Vol 23 (3) ◽  
pp. 283-293 ◽  
Author(s):  
Ken Komatsu ◽  
Masayoshi Hashimoto ◽  
Johji Ozeki ◽  
Yasuyuki Yamaji ◽  
Kensaku Maejima ◽  
...  

Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKα and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKα-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKα-MEK2 cascade. Similarly, although both SGT1 and MAPKKKα were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKα was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.


2018 ◽  
Vol 59 (5) ◽  
pp. 203-212
Author(s):  
Valentina Hribljan ◽  
Iva Salamon ◽  
Arijana Đemaili ◽  
Ivan Alić ◽  
Dinko Mitrečić

2020 ◽  
Vol 21 (24) ◽  
pp. 9560
Author(s):  
Francesco Monticolo ◽  
Emanuela Palomba ◽  
Maria Luisa Chiusano

The main hallmarks of cancer diseases are the evasion of programmed cell death, uncontrolled cell division, and the ability to invade adjacent tissues. The explosion of omics technologies offers challenging opportunities to identify molecular agents and processes that may play relevant roles in cancer. They can support comparative investigations, in one or multiple experiments, exploiting evidence from one or multiple species. Here, we analyzed gene expression data from induction of programmed cell death and stress response in Homo sapiens and compared the results with Saccharomyces cerevisiae gene expression during the response to cell death. The aim was to identify conserved candidate genes associated with Homo sapiens cell death, favored by crosslinks based on orthology relationships between the two species. We identified differentially-expressed genes, pathways that are significantly dysregulated across treatments, and characterized genes among those involved in induced cell death. We investigated on co-expression patterns and identified novel genes that were not expected to be associated with death pathways, that have a conserved pattern of expression between the two species. Finally, we analyzed the resulting list by HumanNet and identified new genes predicted to be involved in cancer. The data integration and the comparative approach between distantly-related reference species that were here exploited pave the way to novel discoveries in cancer therapy and also contribute to detect conserved genes potentially involved in programmed cell death.


Sign in / Sign up

Export Citation Format

Share Document