scholarly journals Detection of linear features including bone and skin areas in ultrasound images of joints

Author(s):  
Artur Bąk ◽  
Jakub Segen ◽  
Kamil Wereszczyński ◽  
Pawel Mielnik ◽  
Marcin Fojcik ◽  
...  

Identifying the separate parts in ultrasound images such as bone and skin plays the crucial role in synovitis detection task. This paper presents a detector of bone and skin regions in the form of a classifier which is trained on a set of annotated images. Selected regions have labels: skin or bone or none. Feature vectors used by the classifier are assigned to image pixels as a result of passing the image through the bank of linear and nonlinear filters. The filters include Gaussian blurring filter, its first and second order derivatives, Laplacian as well as positive and negative threshold operations applied to the filtered images. We compared multiple supervised learning classifiers including Naive Bayes, k-Nearest Neighbour, Decision Trees, Random Forest, AdaBoost and Support Vector Machines (SVM) with various kernels, using four classification performance scores and computation time. The Random Forest classifier was selected for the final use, as it gives the best overall evaluation results.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4411 ◽  
Author(s):  
Artur Bąk ◽  
Jakub Segen ◽  
Kamil Wereszczyński ◽  
Pawel Mielnik ◽  
Marcin Fojcik ◽  
...  

Identifying the separate parts in ultrasound images such as bone and skin plays a crucial role in the synovitis detection task. This paper presents a detector of bone and skin regions in the form of a classifier which is trained on a set of annotated images. Selected regions have labels: skin or bone or none. Feature vectors used by the classifier are assigned to image pixels as a result of passing the image through the bank of linear and nonlinear filters. The filters include Gaussian blurring filter, its first and second order derivatives, Laplacian as well as positive and negative threshold operations applied to the filtered images. We compared multiple supervised learning classifiers including Naive Bayes, k-Nearest Neighbour, Decision Trees, Random Forest, AdaBoost and Support Vector Machines (SVM) with various kernels, using four classification performance scores and computation time. The Random Forest classifier was selected for the final use, as it gives the best overall evaluation results.


2018 ◽  
Author(s):  
Artur Bąk ◽  
Jakub Segen ◽  
Kamil Wereszczyński ◽  
Pawel Mielnik ◽  
Marcin Fojcik ◽  
...  

Identifying the separate parts in ultrasound images such as bone and skin plays the crucial role in synovitis detection task. This paper presents a detector of bone and skin regions in the form of a classifier which is trained on a set of annotated images. Selected regions have labels: skin or bone or none. Feature vectors used by the classifier are assigned to image pixels as a result of passing the image through the bank of linear and nonlinear filters. The filters include Gaussian blurring filter, its first and second order derivatives, Laplacian as well as positive and negative threshold operations applied to the filtered images. We compared multiple supervised learning classifiers including Naive Bayes, k-Nearest Neighbour, Decision Trees, Random Forest, AdaBoost and Support Vector Machines (SVM) with various kernels, using four classification performance scores and computation time. The Random Forest classifier was selected for the final use, as it gives the best overall evaluation results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tom Elliot ◽  
Robert Morse ◽  
Duane Smythe ◽  
Ashley Norris

AbstractIt is 50 years since Sieveking et al. published their pioneering research in Nature on the geochemical analysis of artefacts from Neolithic flint mines in southern Britain. In the decades since, geochemical techniques to source stone artefacts have flourished globally, with a renaissance in recent years from new instrumentation, data analysis, and machine learning techniques. Despite the interest over these latter approaches, there has been variation in the quality with which these methods have been applied. Using the case study of flint artefacts and geological samples from England, we present a robust and objective evaluation of three popular techniques, Random Forest, K-Nearest-Neighbour, and Support Vector Machines, and present a pipeline for their appropriate use. When evaluated correctly, the results establish high model classification performance, with Random Forest leading with an average accuracy of 85% (measured through F1 Scores), and with Support Vector Machines following closely. The methodology developed in this paper demonstrates the potential to significantly improve on previous approaches, particularly in removing bias, and providing greater means of evaluation than previously utilised.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Na’eem Hoosen Agjee ◽  
Onisimo Mutanga ◽  
Kabir Peerbhay ◽  
Riyad Ismail

Hyperspectral datasets contain spectral noise, the presence of which adversely affects the classifier performance to generalize accurately. Despite machine learning algorithms being regarded as robust classifiers that generalize well under unfavourable noisy conditions, the extent of this is poorly understood. This study aimed to evaluate the influence of simulated spectral noise (10%, 20%, and 30%) on random forest (RF) and oblique random forest (oRF) classification performance using two node-splitting models (ridge regression (RR) and support vector machines (SVM)) to discriminate healthy and low infested water hyacinth plants. Results from this study showed that RF was slightly influenced by simulated noise with classification accuracies decreasing for week one and week two with the addition of 30% noise. In comparison to RF, oRF-RR and oRF-SVM yielded higher test accuracies (oRF-RR: 5.36%–7.15%; oRF-SVM: 3.58%–5.36%) and test kappa coefficients (oRF-RR: 10.72%–14.29%; oRF-SVM: 7.15%–10.72%). Notably, oRF-RR test accuracies and kappa coefficients remained consistent irrespective of simulated noise level for week one and week two while similar results were achieved for week three using oRF-SVM. Overall, this study has demonstrated that oRF-RR can be regarded a robust classification algorithm that is not influenced by noisy spectral conditions.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4523 ◽  
Author(s):  
Carlos Cabo ◽  
Celestino Ordóñez ◽  
Fernando Sáchez-Lasheras ◽  
Javier Roca-Pardiñas ◽  
and Javier de Cos-Juez

We analyze the utility of multiscale supervised classification algorithms for object detection and extraction from laser scanning or photogrammetric point clouds. Only the geometric information (the point coordinates) was considered, thus making the method independent of the systems used to collect the data. A maximum of five features (input variables) was used, four of them related to the eigenvalues obtained from a principal component analysis (PCA). PCA was carried out at six scales, defined by the diameter of a sphere around each observation. Four multiclass supervised classification models were tested (linear discriminant analysis, logistic regression, support vector machines, and random forest) in two different scenarios, urban and forest, formed by artificial and natural objects, respectively. The results obtained were accurate (overall accuracy over 80% for the urban dataset, and over 93% for the forest dataset), in the range of the best results found in the literature, regardless of the classification method. For both datasets, the random forest algorithm provided the best solution/results when discrimination capacity, computing time, and the ability to estimate the relative importance of each variable are considered together.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1455 ◽  
Author(s):  
Meizhen Lv ◽  
Ang Li ◽  
Tianli Liu ◽  
Tingshao Zhu

Introduction.Suicide has become a serious worldwide epidemic. Early detection of individual suicide risk in population is important for reducing suicide rates. Traditional methods are ineffective in identifying suicide risk in time, suggesting a need for novel techniques. This paper proposes to detect suicide risk on social media using a Chinese suicide dictionary.Methods.To build the Chinese suicide dictionary, eight researchers were recruited to select initial words from 4,653 posts published on Sina Weibo (the largest social media service provider in China) and two Chinese sentiment dictionaries (HowNet and NTUSD). Then, another three researchers were recruited to filter out irrelevant words. Finally, remaining words were further expanded using a corpus-based method. After building the Chinese suicide dictionary, we tested its performance in identifying suicide risk on Weibo. First, we made a comparison of the performance in both detecting suicidal expression in Weibo posts and evaluating individual levels of suicide risk between the dictionary-based identifications and the expert ratings. Second, to differentiate between individuals with high and non-high scores on self-rating measure of suicide risk (Suicidal Possibility Scale, SPS), we built Support Vector Machines (SVM) models on the Chinese suicide dictionary and the Simplified Chinese Linguistic Inquiry and Word Count (SCLIWC) program, respectively. After that, we made a comparison of the classification performance between two types of SVM models.Results and Discussion.Dictionary-based identifications were significantly correlated with expert ratings in terms of both detecting suicidal expression (r= 0.507) and evaluating individual suicide risk (r= 0.455). For the differentiation between individuals with high and non-high scores on SPS, the Chinese suicide dictionary (t1:F1= 0.48; t2:F1= 0.56) produced a more accurate identification than SCLIWC (t1:F1= 0.41; t2:F1= 0.48) on different observation windows.Conclusions.This paper confirms that, using social media, it is possible to implement real-time monitoring individual suicide risk in population. Results of this study may be useful to improve Chinese suicide prevention programs and may be insightful for other countries.


2019 ◽  
Vol 11 (11) ◽  
pp. 3222 ◽  
Author(s):  
Pascal Schirmer ◽  
Iosif Mporas

In this paper we evaluate several well-known and widely used machine learning algorithms for regression in the energy disaggregation task. Specifically, the Non-Intrusive Load Monitoring approach was considered and the K-Nearest-Neighbours, Support Vector Machines, Deep Neural Networks and Random Forest algorithms were evaluated across five datasets using seven different sets of statistical and electrical features. The experimental results demonstrated the importance of selecting both appropriate features and regression algorithms. Analysis on device level showed that linear devices can be disaggregated using statistical features, while for non-linear devices the use of electrical features significantly improves the disaggregation accuracy, as non-linear appliances have non-sinusoidal current draw and thus cannot be well parametrized only by their active power consumption. The best performance in terms of energy disaggregation accuracy was achieved by the Random Forest regression algorithm.


2021 ◽  
Vol 13 (18) ◽  
pp. 3573
Author(s):  
Chunfang Kong ◽  
Yiping Tian ◽  
Xiaogang Ma ◽  
Zhengping Weng ◽  
Zhiting Zhang ◽  
...  

Regarding the ever increasing and frequent occurrence of serious landslide disaster in eastern Guangxi, the current study was implemented to adopt support vector machines (SVM), particle swarm optimization support vector machines (PSO-SVM), random forest (RF), and particle swarm optimization random forest (PSO-RF) methods to assess landslide susceptibility in Zhaoping County. To this end, 10 landslide disaster-related variables including digital elevation model (DEM)-derived, meteorology-derived, Landsat8-derived, geology-derived, and human activities factors were provided. Of 345 landslide disaster locations found, 70% were used to train the models, and the rest of them were performed for model verification. The aforementioned four models were run, and landslide susceptibility evaluation maps were produced. Then, receiver operating characteristics (ROC) curves, statistical analysis, and field investigation were performed to test and verify the efficiency of these models. Analysis and comparison of the results denoted that all four landslide models performed well for the landslide susceptibility evaluation as indicated by the area under curve (AUC) values of ROC curves from 0.863 to 0.934. Among them, it has been shown that the PSO-RF model has the highest accuracy in comparison to other landslide models, followed by the PSO-SVM model, the RF model, and the SVM model. Moreover, the results also showed that the PSO algorithm has a good effect on SVM and RF models. Furthermore, the landslide models devolved in the present study are promising methods that could be transferred to other regions for landslide susceptibility evaluation. In addition, the evaluation results can provide suggestions for disaster reduction and prevention in Zhaoping County of eastern Guangxi.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7417
Author(s):  
Alex J. Hope ◽  
Utkarsh Vashisth ◽  
Matthew J. Parker ◽  
Andreas B. Ralston ◽  
Joshua M. Roper ◽  
...  

Concussion injuries remain a significant public health challenge. A significant unmet clinical need remains for tools that allow related physiological impairments and longer-term health risks to be identified earlier, better quantified, and more easily monitored over time. We address this challenge by combining a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration (“phybrata”) sensor and several candidate machine learning (ML) models. The performance of this solution is assessed for both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments. Results are compared with previously reported approaches to ML-based concussion diagnostics. Using phybrata data from a previously reported concussion study population, four different machine learning models (Support Vector Machine, Random Forest Classifier, Extreme Gradient Boost, and Convolutional Neural Network) are first investigated for binary classification of the test population as healthy vs. concussion (Use Case 1). Results are compared for two different data preprocessing pipelines, Time-Series Averaging (TSA) and Non-Time-Series Feature Extraction (NTS). Next, the three best-performing NTS models are compared in terms of their multiclass prediction performance for specific concussion-related impairments: vestibular, neurological, both (Use Case 2). For Use Case 1, the NTS model approach outperformed the TSA approach, with the two best algorithms achieving an F1 score of 0.94. For Use Case 2, the NTS Random Forest model achieved the best performance in the testing set, with an F1 score of 0.90, and identified a wider range of relevant phybrata signal features that contributed to impairment classification compared with manual feature inspection and statistical data analysis. The overall classification performance achieved in the present work exceeds previously reported approaches to ML-based concussion diagnostics using other data sources and ML models. This study also demonstrates the first combination of a wearable IMU-based sensor and ML model that enables both binary classification of concussion patients and multiclass predictions of specific concussion-related neurophysiological impairments.


Sign in / Sign up

Export Citation Format

Share Document