scholarly journals Augmentative role of Piriformospora indica fungus and plant growth promoting bacteria in mitigating salinity stress in Trigonella foenum-graecum

Author(s):  
Bisht Sanskriti ◽  
Singh Shatrupa ◽  
Singh Madhulika ◽  
Sharma Jai Gopal
Author(s):  
Khushboo Chaudhary ◽  
Suphiya Khan ◽  
Pankaj Kumar Saraswat

The heavy metal pollution problem is all over the world. Plant-growth-promoting bacteria (PGPB) has transformed heavy metals present in the soil, which removes and minimizes their toxic effects. This chapter highlights the role of plant-growth-promoting bacteria, chelating agents, and nanoparticles for remediation of heavy metals; their mechanism of action; and their applications approach of hyperaccumulation. Therefore, this chapter focuses on the mechanisms by which microorganisms, chelating agents, and nanoparticles can mobilize or immobilize metals in soils and the nano-phytoremediation strategies are addressed for the improvement of phytoextraction as an innovative process for enhancement of heavy metals removal from soil.


2017 ◽  
Vol 3 (3) ◽  
pp. 413-434 ◽  
Author(s):  
Nilde Antonella Di Benedetto ◽  
◽  
Maria Rosaria Corbo ◽  
Daniela Campaniello ◽  
Mariagrazia Pia Cataldi ◽  
...  

2020 ◽  
Vol 10 (20) ◽  
pp. 7326
Author(s):  
Stefan Shilev

Soil deterioration has led to problems with the nutrition of the world’s population. As one of the most serious stressors, soil salinization has a negative effect on the quantity and quality of agricultural production, drawing attention to the need for environmentally friendly technologies to overcome the adverse effects. The use of plant-growth-promoting bacteria (PGPB) can be a key factor in reducing salinity stress in plants as they are already introduced in practice. Plants having halotolerant PGPB in their root surroundings improve in diverse morphological, physiological, and biochemical aspects due to their multiple plant-growth-promoting traits. These beneficial effects are related to the excretion of bacterial phytohormones and modulation of their expression, improvement of the availability of soil nutrients, and the release of organic compounds that modify plant rhizosphere and function as signaling molecules, thus contributing to the plant’s salinity tolerance. This review aims to elucidate mechanisms by which PGPB are able to increase plant tolerance under soil salinity.


Author(s):  
Khushboo Chaudhary ◽  
Suphiya Khan

The heavy metal pollution problem is all over the world. Plant growth promoting bacteria (PGPB) has transformed heavy metals present in the soil, which removes and minimizes their toxic effects. This chapter highlights the role of PGPB for remediation of heavy metals, their mechanism of action, and their applications approach of hyperaccumulation. Further, it also highlights the role of uptake and detoxification of metals by cellular mechanisms which facilitate the bioremediation of heavy metals from contaminated areas. Bacteria may also enhance nutrient uptake, increasing plant growth and defenses while diminish heavy metals intake and their toxic effects. Therefore, this chapter focuses on the mechanisms by which microorganisms can mobilize or immobilize metals in soils and the bioremediation strategies are addressed for the improvement of phytoextraction as an innovative process for enhancement of heavy metals removal from soil.


Sign in / Sign up

Export Citation Format

Share Document