scholarly journals First results of multidisciplinary investigations for the hydrogeological conceptual modelling of loess deposits in eastern Croatia

Author(s):  
Marco Pola ◽  
Ivica Pavičić ◽  
Vedran Rubinić ◽  
Ivan Kosović ◽  
Lidija Galović ◽  
...  

Loess is a widespread continental aeolian sediment. Groundwater generally represents the most important source of potable water in loess areas, where loess is the aquitard overlying the aquifer system. This work investigates loess deposits of eastern Croatia that overlie a sandy aquifer exploited for potable and agricultural purposes. The genesis of the deposit and the depositional and post-depositional processes affecting its structure were reviewed in this work and integrated with the estimated hydrogeological properties of the material to propose a preliminary hydrogeological conceptual model of the loess-sand system. The results of published granulometric analyses were used to calculate the effective porosity and the hydraulic conductivity of the material employing an analytical approach. The eastern Croatian loess is a silty deposit originated during Middle-Upper Pleistocene glacial periods. The sediments produced by glacial grinding were transported and deposited by the Danube fluvial system and subsequently remobilised by wind forming the loess. During the interglacial periods, the pedogenesis of the deposit occurred, with bioturbations and discontinuities by living organisms at the micro- and macro-scale. The deposition of a new loess layer compacted and consolidated the previously deposited loess leading to the development of a sub-vertical pore structure and sub-vertical cracks at the micro- and macro-scale, respectively. The calculations from the grain size distributions point to the low effective porosity (5-12%) and hydraulic conductivity (~10-9 m/s) of both loess and pedocomplexes supporting their aquitard behaviour. The infiltration of surficial waters and their flow toward the underlying sandy aquifer is locally enhanced by the post-depositional discontinuities that constitute preferential flow paths within the loess aquitard. These results highlight the need of detailed hydrogeological investigations in loess deposits to address the impact of post-depositional processes on their hydrogeological behaviour and the upscaling of their hydrogeological properties for proposing specific groundwater protection strategies in loess areas.

2021 ◽  
Vol 91 (3) ◽  
pp. 262-295
Author(s):  
BRIAN J. WILLIS ◽  
TAO SUN ◽  
R. BRUCE AINSWORTH

Abstract Process-physics-based, coupled hydrodynamic–morphodynamic delta models are constructed to understand preserved facies heterogeneities that can influence subsurface fluid flow. Two deltaic systems are compared that differ only in the presence of waves: one river dominated and the other strongly influenced by longshore currents. To understand an entire preserved deltaic succession, the growth of multiple laterally adjacent delta lobes is modeled to define delta axial to marginal facies trends through an entire regressive–transgressive depositional succession. The goal is to refine a facies model for symmetrical wave-dominated deltas (where littoral drift diverges from the delta lobe apex). Because many factors change depositional processes on deltas, the description of the river-dominated example is included to provide a direct reference case from which to define the impact of waves on preserved facies patterns. Both systems display strong facies trends from delta axis to margin that continued into inter-deltaic areas. River-dominated delta regression preserved a dendritic branching of compensationally stacked bodies. Transgression, initiated by sea-level rise, backfilled the main channel and deposited levees and splays on the submerging delta top. Wave-dominated deltas developed dual clinoforms: a shoreface clinoform built as littoral drift carried sediment away from the river month and onshore, and a subaqueous delta-front clinoform composed of sediment accumulated below wave base. Although littoral drift in both directions away from the delta axis stabilized the position of the river at the shoreline, distributary-channel avulsions and lateral migration of river flows across the subaqueous delta top produced heterogeneities in both sets of clinoform deposits. Separation of shoreface and subaqueous delta-front clinoforms across a subaqueous delta top eroded to wave base produced a discontinuity in progradational vertical successions that appeared gradual in some locations but abrupt in others. Littoral drift flows away from adjacent deltas converged in inter-deltaic areas, producing shallow water longshore bars cut by wave-return-flow channels with associated terminal mouth bars. Transgression initiated by sea-level rise initially led to vertical aggradation of wave-reworked sheet sands on the subaqueous delta top and then retreating shoreface barrier sands as the subaerial delta top flooded. Pseudo inter-well flow tests responded to local heterogeneities in the preserved deposits. As expected, abandoned channels in the river-dominated case defined shoreline-perpendicular preferential flow paths and wave-dominated delta deposits are more locally homogeneous, but scenarios for development of more pronounced shore-parallel heterogeneity patterns for wave-influenced deltas are discussed. The results highlight the need to consider the dual clinoform nature of wave-dominated delta deposition for facies prediction and subsurface interpretation.


2013 ◽  
Vol 17 (1) ◽  
pp. 295-314 ◽  
Author(s):  
L. Rodríguez ◽  
L. Vives ◽  
A. Gomez

Abstract. In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s−1 while the observed absolute minimum discharge was 382 m3 s−1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average, pumping represented 16.2% of inflows while aquifer storage experienced a small overall increment. The model water balance indicates that the current rate of groundwater withdrawals does not exceed the rate of recharge in a regional sense.


2008 ◽  
Vol 2 (No. 2) ◽  
pp. 59-66 ◽  
Author(s):  
L. Lichner ◽  
T. Orfánus ◽  
K. Novákova ◽  
M. Šír ◽  
M. Tesař

The objective of this study was to assess the impact of vegetation on the hydraulic conductivity of sandy soil at the locality Ml&aacute;ky II at Sekule (southwest Slovakia). The measurements were taken on the surface of a meadow (Meadow site), a 30-year old Scots pine (Pinus sylvestris) forest (Forest site) and a glade (Glade site). In the glade, the measurements were also taken in the depth of 50 cm (Pure sand) to reduce the influence of vegetation on the soil properties. It was found that the unsaturated hydraulic conductivity k<sub>r</sub>(&minus;2 cm) as reduced due to the soil water repellency increased in the same order: Forest soil &lt; Glade soil &asymp; Meadow soil &lt; Pure sand, similarly as decreased the water drop penetration time t<sub>p</sub>: Forest soil &gt; Glade soil &asymp; Meadow soil &gt; Pure sand, which could refer to an inverse proportionality between the capillary suction and hydrophobic coating of the soil particles. The saturated hydraulic conductivity K<sub>s</sub> increased in the following order: Meadow soil &lt; Glade soil &asymp; Forest soil &lt; Pure sand; more than two-times higher K<sub>s</sub> at both the Forest and Glade sites than that at the Meadow site could be the result of both the patchy growth of vegetation with some areas of bare soil at the Glade site and the macropores (dead roots) in more homogeneous humic top-layer at the Forest site. The share B<sub>r</sub> of flux through the pores with radii r longer than approximately 0.5 mm decreased in the order: Forest soil &raquo; Meadow soil &gt; Glade soil &raquo; Pure sand, revealing the prevalence of preferential flow through macropores (dead roots) in the Forest site and a negligible share of macropores in the Pure sand.


2012 ◽  
Vol 9 (8) ◽  
pp. 9885-9930
Author(s):  
L. Rodríguez ◽  
L. Vives ◽  
A. Gomez

Abstract. In large aquifers relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water, however, it is not well known being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore, a global water balance were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations, is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay river was 8 m3 s−1 while the observed absolute minimum discharge was 382 m3 s−1. Streams located in heavily pumped regions switched from a gaining condition on early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average, pumping represented 16.2% of inflows while aquifer storage experienced a small overall increment. The model water balance indicates that the current rate of groundwater withdrawals does not exceed the rate of recharge on a regional sense.


1990 ◽  
Vol 21 (2) ◽  
pp. 81-94 ◽  
Author(s):  
Sylvi Haldorsen ◽  
Johannes Krüger

Hydrogeological properties of tills are highly dependent upon factors as grain-size distribution, compaction, orientation of particles, presence of fractures and occurrence of sorted sediments. These factors are again dependent upon the till forming processes. Lodgement tills formed under active, temperate sliding glaciers are usually compact, rather homogeneous and in many cases they are fractured. Melt-out tills deposited in connection with stagnant ice are in most cases less dense, have a lower content of fine-grained particles and a higher abundance of sorted sediment lenses. Flow tills which are mainly formed by a secondary flow of supraglacial debris are commonly very variable, they may have a low content of fine-grained components, a low degree of compaction and they are often closely connected with sorted glaciofluvial sediments. Till genesis is in many cases difficult to interpret, and an objective description of all main characteristics of the till is important in hydrogeological studies. The lodgement till has a lower effective porosity than the melt-out and flow tills due to its finer grain-sizes and higher compactness. The saturated hydraulic conductivity is lower, and dependent upon the fracture pattern. In melt-out tills and flow tills the occurrence of well sorted sediments will in many cases control the hydraulic conductivity. In all till types the structural properties are most important for the saturated water flow.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-40
Author(s):  
Suneetha Naidu ◽  
Gautam Gupta

Estimation of hydraulic parameters in coastal aquifers is an important task in groundwater resource assessment and development. An attempt is made to estimate these parameters using geoelectrical data in combination with pore-water resistivity of existing wells. In the present study, 29 resistivity soundings were analysed along with 29 water samples, collected from the respective dug wells and boreholes, in order to compute hydraulic parameters like formation factor, porosity, hydraulic conductivity and transmissivity from coastal region of north Sindhudurg district, Maharashtra, India. The result shows some parts of the study area reveal relatively high value of hydraulic conductivity, porosity and transmissivity. Further, a negative correlation is seen between hydraulic conductivity and bulk resistivity. The hydraulic conductivity is found to vary between 0.014 and 293 m/day, and the transmissivity varied between 0.14 and 11,722 m2/day. The transmissivity values observed here are in good correspondence with those obtained from pumping test data of Central Ground Water Board. These zones also have high aquifer thickness and therefore characterize high potential within the water-bearing formation. A linear, positive relationship between transverse resistance and transmissivity is observed, suggesting increase in transverse resistance values indicate high transmissivity of aquifers. These relations will be extremely vital in characterization of aquifer system, especially from crystalline hard rock area.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4658
Author(s):  
Artur Guzy ◽  
Wojciech T. Witkowski

Land subsidence caused by groundwater withdrawal induced by mining is a relatively unknown phenomenon. This is primarily due to the small scale of such movements compared to the land subsidence caused by deposit extraction. Nonetheless, the environmental impact of drainage-related land subsidence remains underestimated. The research was carried out in the “Bogdanka” coal mine in Poland. First, the historical impact of mining on land subsidence and groundwater head changes was investigated. The outcomes of these studies were used to construct the influence method model. With field data, our model was successfully calibrated and validated. Finally, it was used for land subsidence estimation for 2030. As per the findings, the field of mining exploitation has the greatest land subsidence. In 2014, the maximum value of the phenomenon was 0.313 cm. However, this value will reach 0.364 m by 2030. The spatial extent of land subsidence caused by mining-induced drainage extends up to 20 km beyond the mining area’s boundaries. The presented model provided land subsidence patterns without the need for a complex numerical subsidence model. As a result, the method presented can be effectively used for land subsidence regulation plans considering the impact of mining on the aquifer system.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2159
Author(s):  
George Bennett ◽  
Jill Van Reybrouck ◽  
Ceven Shemsanga ◽  
Mary Kisaka ◽  
Ines Tomašek ◽  
...  

This study characterises high-fluoride groundwater in the aquifer system on the flanks of Mount Meru, focusing on parts of the flanks that were only partially or not at all covered by previous research. Additionally, we analyse the impact of rainwater recharge on groundwater chemistry by monitoring spring discharges during water sampling. The results show that the main groundwater type in the study area is NaHCO3 alkaline groundwater (average pH = 7.8). High F− values were recorded: in 175 groundwater samples, the concentrations range from 0.15 to 301 mg/L (mean: 21.89 mg/L, median: 9.67 mg/L), with 91% of the samples containing F− values above the WHO health-based guideline for drinking water (1.5 mg/L), whereas 39% of the samples have Na+ concentrations above the WHO taste-based guideline of 200 mg/L. The temporal variability in F− concentrations between different seasons is due to the impact of the local groundwater recharge. We recommend that a detailed ecohydrological study should be carried out for the low-fluoride springs from the high-altitude recharge areas on the eastern and northwestern flanks of Mount Meru inside Arusha National Park. These springs are extracted for drinking purposes. An ecohydrological study is required for the management of these springs and their potential enhanced exploitation to ensure the sustainability of this water extraction practice. Another strategy for obtaining safe drinking water could be to use a large-scale filtering system to remove F− from the groundwater.


2010 ◽  
Vol 27 (5) ◽  
pp. 409-423 ◽  
Author(s):  
Sergio Velasco Ayuso ◽  
Ana Isabel López-Archilla ◽  
Carlos Montes ◽  
María del Carmen Guerrero

2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.


Sign in / Sign up

Export Citation Format

Share Document