scholarly journals Effect of protease inhibitors on thermal gelation of squid (Illex argentinus). mantle paste

2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Maria Elida Paredi ◽  
Emilio Aldo Manca ◽  
Marcos Crupkin

The characteristics of the thermal gelation of squid mantle paste and the effect of protease inhibitors on them were investigated. Pastes in the absence and presence the protease inhibitors, ethylendiaminetetracetic acid (EDTA) and phenylmethylsulfonyl fluoride (PMSF), were formulated. Pastes were made by the respective one or two step thermal treatments: direct heating at 85°C for 20 min and preincubation at 27 or 40 °C for 3 or 2 hours, followed by heating at 85 °C for 20 min. The gel strength, water holding capacity (WHC) and whiteness of gelled pastes were analyzed. The tricloroacetic acid (TCA) soluble peptides in homogenate of the muscle were determined. Gel strength decreased when heating was made in two steps. EDTA and PMSF were effective in avoiding that decrease when pre-incubation was made at 40 °C. Maximum gel strength was observed for the gels in presence of EDTA, giving values of 255 and 219 g x cm for the samples made by direct heating and pre-incubated at 40 °C  respectively. TCA soluble peptides increased between 20 and 60 °C, with maximum values reached at 30 and 60 °C. No significant differences (p>0.05) were observed in gel whiteness, neither with the thermal treatment nor with the inhibitors. The WHC was higher (p<0.05) in the gelated paste formulated with EDTA. These results show a good gelation capacity of I argentinus pastes and improvements with protease inhibitors. 

Author(s):  
Maria Elida Paredi ◽  
Emilio Aldo Manca ◽  
Marcos Crupkin

The characteristics of the thermal gelation of squid mantle paste and the effect of protease inhibitors on them were investigated. Pastes in the absence and presence the protease inhibitors, ethylendiaminetetracetic acid (EDTA) and phenylmethylsulfonyl fluoride (PMSF), were formulated. Pastes were made by the respective one or two step thermal treatments: direct heating at 85°C for 20 min and preincubation at 27 or 40 °C for 3 or 2 hours, followed by heating at 85 °C for 20 min. The gel strength, water holding capacity (WHC) and whiteness of gelled pastes were analyzed. The tricloroacetic acid (TCA) soluble peptides in homogenate of the muscle were determined. Gel strength decreased when heating was made in two steps. EDTA and PMSF were effective in avoiding that decrease when pre-incubation was made at 40 °C. Maximum gel strength was observed for the gels in presence of EDTA, giving values of 255 and 219 g x cm for the samples made by direct heating and pre-incubated at 40 °C  respectively. TCA soluble peptides increased between 20 and 60 °C, with maximum values reached at 30 and 60 °C. No significant differences (p>0.05) were observed in gel whiteness, neither with the thermal treatment nor with the inhibitors. The WHC was higher (p<0.05) in the gelated paste formulated with EDTA. These results show a good gelation capacity of I argentinus pastes and improvements with protease inhibitors. 


2014 ◽  
Vol 17 (1) ◽  
pp. 8-18 ◽  
Author(s):  
Daniela Mariel Suarez ◽  
Emilio Manca ◽  
Marcos Crupkin ◽  
Maria Elida Paredi

The aim of the present work was to investigate the physicochemical, biochemical and functional characteristics of both the myofibrils (MF) and actomyosin (AM) of squid mantle (Illex argentinus) and weakfish (Cynoscion guatucupa) muscles, and evaluate the influence of the addition of myofibrilar proteins from the squid mantle on the physicochemical and functional properties of those of the weakfish. After extraction, purification and characterization of the MF and AM of both species, emulsions of each protein fraction from each muscle were formulated. Mixtures of the MF or AM of both species were also analyzed. The emulsifying properties were monitoring using the Emulsifying Activity Index (EAI) and Emulsion Stability (ES). In addition, gel pastes were formulated from the squid mantle, weakfish muscle and the mixture of both species, and the following functional properties of the gels assessed: water holding capacity, colour, textural profile analysis (TPA) (hardness, elasticity, cohesiveness, gumminess) and gel strength. The EAI values of emulsions formulated with the MF of the mantle were significantly (p<0.05) higher than those formulated from those of weakfish. The incorporation of squid MF in the mixture increased the EAI values. Conversely, the highest ES values were obtained with weakfish MF, and the incorporation of MF weakfish in the mixture increased the ES values. Similar EAI and ES behaviours were observed for the AM of the corresponding species. Irrespective of the thermal treatment, the gel strength of the gelled paste of squid muscle was significantly (p<0.05) lower than that of weakfish muscle and of those obtained with the different mixtures. The behaviours of the expressible moisture (EM) from the gelled pastes were similar to those of gel strength. Irrespective of the thermal treatment, the pastes formulated with a high weakfish: mantle ratio showed less water loss. The gelled pastes of squid mantle showed the highest values for whiteness (WI) and the incorporation of squid muscle protein improved the WI of the mixtures.


Author(s):  
Fatma Boukid ◽  
Elena Curti ◽  
Agoura Diantom ◽  
Eleonora Carini ◽  
Elena Vittadini

AbstractIndustrial processing of tomato includes its cutting and mincing, thermal treatments, and the addition of ingredients, which might induce changes in physicochemical properties of the final products. In this frame, the impact of texturing/thickening [xanthan gum (X) or potato fiber (F)] on the macroscopic, mesoscopic and molecular properties of tomato double concentrate (TDC) was investigated to determine if F can efficiently substitute X, in association with small solutes (sugar and salt) and thermal treatment (cold and hot). At a macroscopic level, multivariate statistics (MANOVA) underlined that color change (ΔE) was increased by X and F addition contrary to heating and the addition of salt and sugar. MANOVA revealed that texture was greatly enhanced through the use of F over X. 1H NMR molecular mobility changes were more controlled by texturing agents (F and X) than thermal treatment and small solutes. Particularly F increased the more rigid population indicating stronger interaction with water molecules resulting in shear-thinning flow. However, adding X contributed into the increase of the dynamic and mobile populations. Therefore, F can be a valid “clean label” substitute of X in modulating tomato products properties.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9756-9785
Author(s):  
Muhammad Taqi-udeen Safian ◽  
Umirah Syafiqah Haron ◽  
Mohamad Nasir Mohamad Ibrahim

Biomass waste has become a new source for producing graphene due to its carbon-rich structure and renewable nature. In this paper, the research on the conversion of bio-based graphene from different biomass wastes is summarised and discussed. This paper reviews the methods for converting biomass to bio-based graphene. There are two approaches for thermal degradation of biomass: thermal exfoliation and carbon growth. The purpose of the thermal treatment is to increase the carbon content by removing volatile matter from the biomass polymer chain. Pre-treatments that help to break down the complex structure of the biomass are discussed; pre-treatments also remove impurities from the said biomass. Lastly, the characteristics of bio-based graphene produced from different biomass and thermal treatments are summarised.


2020 ◽  
Vol 10 (3) ◽  
pp. 998 ◽  
Author(s):  
Yuwu Sui ◽  
Chuping Ou ◽  
Shu Liu ◽  
Jinshuai Zhang ◽  
Qingbo Tian

Waste concrete must be crushed, screened, and ground in order to produce high-quality recycled aggregate. In this treatment process, 15–30% waste concrete powder (<0.125 mm) can be generated. Hydration activity and the reuse of waste concrete powders (WCPs) were studied in this work, and the results illustrated that the particle size changed after a series of thermal treatments at temperatures from 400 ℃ to 800 ℃. The particle size of waste concrete powder decreased by 700 ℃ thermal treatment, and by 600 ℃ thermal treatment, it increased. More active elements appeared in WCP heated by 800 ℃. Nevertheless, the activity index (AI) of WCP, measured by the ratio of mechanical strengths between mortar with a 30% replacement of the cement with WCP and normal mortar without WCP, indicated that the WCP by 700 ℃ thermal treatment had an optimal AI value, which meant WCP treated at 700 ℃ could be used in mortar or concrete as an admixture.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3543
Author(s):  
Weijian Ye ◽  
Bowen Yan ◽  
Jie Pang ◽  
Daming Fan ◽  
Jianlian Huang ◽  
...  

To improve the gelation performance of konjac glucomannan (KGM) thermo-irreversible gel in the condition of alkaline, this study investigated the interactions between KGM and curdlan (CUD) in terms of the sol state and gelation process. The apparent viscosity, rheological properties during heating and cooling, thermodynamic properties, gelation properties and water holding capacity of KGM/CUD blend systems in an alkaline environment were studied using physical property testing instruments and methods. The results showed that the viscosity of the KGM/CUD blended solution was greater than the value calculated from the ideal mixing rules in the condition of alkaline (pH = 10.58). As the proportion of CUD in the system increased, the intersection of storage modulus (G’) and loss modulus (G”) shifted to low frequencies, the relaxation time gradually increased, and the degree of entanglement of molecular chains between these two components gradually increased. The addition of CUD helped decrease the gelation temperature of KGM, increased the gelation rate and inhibited the thinning phenomenon of KGM gels at low temperatures (2–20 °C). The addition of CUD increased the hardness and gel strength of KGM but did not significantly improve the water holding capacity of the KGM/CUD blend gel. The process of mixing KGM and CUD improved the thermal stability of the gel. In summary, KGM/CUD exhibited excellent compatibility under alkaline conditions, and the blend systems produced a “viscosifying effect”. KC8 and KC5 show better thermal stability, low temperature resistance and gel strength compared to KGM. This blended gel can be used as a structural support material to provide reference for the development of konjac bionic vegetarian products.


2006 ◽  
Vol 69 (9) ◽  
pp. 2066-2074 ◽  
Author(s):  
IGNACIO ALVAREZ ◽  
BRENDAN A. NIEMIRA ◽  
XUETONG FAN ◽  
CHRISTOPHER H. SOMMERS

Salmonella is a frequent contaminant on eggs and is responsible for foodborne illnesses in humans. Ionizing radiation and thermal processing can be used to inactivate Salmonella in liquid whole egg, but when restricted to doses that do not affect egg quality, these technologies are only partially effective in reducing Salmonella populations. In this study, the effect of ionizing radiation in combination with thermal treatment on the survival of Salmonella serovars was investigated. Of the six Salmonella serovars tested, Salmonella Senftenberg was the most resistant to radiation (Dγ = 0.65 kGy) and heat (D55°C = 11.31 min, z = 4.9°C). Irradiation followed by thermal treatment at 55 or 57°C improved the pasteurization process. Radiation doses as low as 0.1 kGy prior to thermal treatments synergistically reduced the D55°C and D57°C of Salmonella Senftenberg 3.6- and 2.5-fold, respectively. The D55°C and D57°C of Salmonella Typhimurium were reduced 2- and 1.4-fold and those of Salmonella Enteritidis were reduced 2- and 1.6-fold, respectively. Irradiation prior to thermal treatment would enable the reduction of heat treatment times by 86 and 30% at 55 and 57°C, respectively, and would inactivate 9 log units of Salmonella serovars.


2018 ◽  
Vol 14 (5-6) ◽  
Author(s):  
Abeer Alhendi ◽  
Wade Yang ◽  
Paul J. Sarnoski

AbstractInactivation of pure soybean lipoxygenase (LOX) by pulsed light (PL) technique was found to occur due to a photochemical effect, while inactivation of soybean LOX in a real food (soymilk) was due to the photothermal effect of PL. The effect of solution properties on the photochemical ability of PL to inactivate and degrade LOX was investigated. LOX was placed in different conditions and treated with PL at a 7 cm distance with different times. The result showed that LOX was less stable during PL operation at pH 9 compared with pH 6.8. Increasing LOX concentration, adding starch, and making a colored solution did reduce the photochemical ability of PL to inactivate LOX. PL and thermal treatment of partially purified LOX degraded the LOX band (measured by using SDS-PAGE) when no protease inhibitors were added. Controlling protease activity led to degradation of LOX by PL but not by thermal treatment.


Sign in / Sign up

Export Citation Format

Share Document