scholarly journals Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jialong Yang ◽  
Xingguang Lin ◽  
Yun Pan ◽  
Jinli Wang ◽  
Pengcheng Chen ◽  
...  

T follicular helper (Tfh) cells play critical roles for germinal center responses and effective humoral immunity. We report here that mTOR in CD4 T cells is essential for Tfh differentiation. In Mtorf/f-Cd4Cre mice, both constitutive and inducible Tfh differentiation is severely impaired, leading to defective germinal center B cell formation and antibody production. Moreover, both mTORC1 and mTORC2 contribute to Tfh and GC B cell development but may do so via distinct mechanisms. mTORC1 mainly promotes CD4 T cell proliferation to reach the cell divisions necessary for Tfh differentiation, while Rictor/mTORC2 regulates Tfh differentiation by promoting Akt activation and TCF1 expression without grossly influencing T cell proliferation. Together, our results reveal crucial but distinct roles for mTORC1 and mTORC2 in CD4 T cells during Tfh differentiation and germinal center responses.

1995 ◽  
Vol 181 (3) ◽  
pp. 1081-1089 ◽  
Author(s):  
H Secrist ◽  
R H DeKruyff ◽  
D T Umetsu

We have previously shown that CD4+ T cells from allergic individuals are predisposed to produce interleukin (IL)-4 in response to allergens, and that allergen immunotherapy greatly reduced IL-4 production in an allergen-specific fashion. The mechanism that results in the reduction of IL-4 synthesis in treated individuals is unknown, but because clinical improvement during immunotherapy is associated with the administration of the highest doses of allergen, we hypothesized that high concentration of allergen results in the downregulation of IL-4 synthesis in CD4+ T cells. In this report, we demonstrated that CD4+ T cells from allergic donors produced high levels of IL-4 when stimulated with low concentrations of allergen (0.003-0.01 micrograms/ml), particularly when B cell-enriched populations presented the antigen. In contrast, the same responding CD4+ T cell population produced little IL-4 when stimulated with high concentrations of allergen (10-30 micrograms/ml), especially when monocytes were used as antigen-presenting cells (APC). The quantity of IL-4 produced was also found to be inversely related to the extent of proliferation of the CD4+ T cells in response to allergen/antigen; maximal proliferation of CD4+ T cells occurred in response to high concentrations of antigen when IL-4 production was minimal. Antigen presentation by B cell-enriched populations, instead of monocytes, induced less CD4+ T cell proliferation, but induced much greater IL-4 synthesis. Moreover, the addition of increasing numbers of APC (either B cells or monocytes) to cultures containing a constant number of responder T cells resulted in increased T cell proliferation and decreased IL-4 production. These results indicate that the circumstances under which memory T cells are activated, as well as the strength of the proliferative signal to T cells, greatly affect the quantity of IL-4 produced. Thus, our observations that the cytokine profile of allergen-specific memory CD4+ T cells can indeed be modulated by the antigen dose and APC type suggest that methods that preferentially enhance allergen uptake by monocytes and that enhance T cell proliferation will improve the clinical efficacy of immunotherapy in the treatment of allergic disease.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 440-440
Author(s):  
Radoslaw Kaczmarek ◽  
Annie R Pineros ◽  
Matthew Carl Arvin ◽  
Thais Bertolini ◽  
Rodney M. Camire ◽  
...  

Abstract Inhibitor formation is the most serious complication of factor (F)VIII replacement therapy for hemophilia A. It has long been clear that FVIII inhibitors arise in a CD4 + T cell-dependent manner, but early events in the immune response leading to MHC-II presentation and CD4 + T cell activation remain obscure. Several types of antigen presenting cells (APCs) have been implicated in the uptake of FVIII, but their relevance in T cell activation has been unclear. This study aimed to pinpoint the roles of APCs in priming FVIII-specific CD4 + T cells in vivo. Several transgenic strains of mice on the C57BL/6J background were employed to perform in vivo antigen presentation assays involving one intravenous (IV) injection of 5 µg FVIII-OVA fusion protein (FOVA), which contained an MHC-II I-A b peptide epitope of chicken ovalbumin in place of the B domain of FVIII, and an adoptive transfer (via IV injection on the following day) of 5E6 transgenic OT-II CD4 + T cells, which express chicken ovalbumin-specific T cell receptor (TCR). Before adoptive transfers, OT-II T cells were stained with CellTrace Violet (CTV). Spleens were collected for flow cytometry analyses four days after the adoptive transfer. FOVA shows identical specific activity to that of B domain deleted FVIII. CD11c-DTR/GFP mice (which express diphtheria toxin receptor and green fluorescent protein under the CD11c promoter) (n=3) received two intraperitoneal (IP) injections of 100 ng diphtheria toxin (DT) or PBS only (n=3) one day before and on the day of FVIII-OVA injection to deplete CD11c high cells (i.e. dendritic cells, DCs, marginal zone, sinusoidal and metallophilic macrophages, MFs). DT treatment completely abrogated T cell proliferation in the animals (p=0.03), while on average 11.1% of CD4 +CTV + cells from the control animals were progenies of the transferred cells. XCR1-DTRvenus mice (which express DT receptor and the Venus variant of yellow fluorescent protein under the XCR1 promoter) were similarly treated with DT or PBS (n=4/group) one day before FOVA injection and one day after adoptive transfer to deplete type I conventional DCs (which make up ~80% of XCR1 + cells). XCR1 + cell depletion reduced T cell proliferation by ~50% (p=0.02). CD4 +CTV + cells from the DT-treated and control mice included 19.4% and 38.6% progenies, respectively. Hemophilia A (F8e16-/-) mice received 100 µg of marginal zone (MZ) B cell-depleting antibodies anti-CD11a and anti-CD49d (n=4) or isotype control antibodies (n=3) four and two days before FOVA injection. MZ B cell depletion completely abrogated T cell proliferation (p=0.02), while on average 31% of CD4 +CTV + cells from the control animals were progenies of the transferred cells. In another experiment, hemophilia A mice were injected with GdCl 3 (n=4), which inactivates MFs, or PBS (n=3) one day before and on the day of FOVA administration. MF inactivation completely abrogated T cell proliferation in all but 1 animal (p=0.03), while on average 15.9% of CD4 +CTV + cells from the control animals were progenies of the transferred cells. To visualize APC-T cell interactions in vivo, we performed multiphoton (MP) intravital microscopy (IVM) of inguinal lymph nodes (LNs) in CD11c-DTR/GFP mice. The animals received adoptive transfers of 1E7 CTV-stained OT-II CD4 + T cells IV ~24 hours and 5 µg FOVA 20, 5 or 1 hour before IVM delivered intradermally (ID) to target the skin-draining LNs. Control animals received adoptive cell transfer only. For IVM, the LNs were surgically exposed in live, anesthetized animals. Five hours after FOVA injection, multiple CTV + OT-II T cells formed clusters around GFP + cells throughout the T cell zone with several motile T cells surveying the B cell follicle. Twenty hours after FOVA injection, CTV + T cells densely populated and demarcated the T-B border in the LNs. CTV + T cells were nearly absent from the inguinal LNs in the control animals. We propose that activation of CD4 + T cells in response to FVIII requires a complex interaction of multiple types of APCs, which occupy distinct compartments in the secondary lymphoid organs that FVIII antigen traverses en route to cognate CD4 + T cells. In the spleen, where response to FVIII primarily takes place, antigens larger than 60 kDa (such as FVIII at 280 kDa) do not freely flow into the white pulp and instead need to be ferried by APCs. While DCs ultimately activate CD4 + T helper cells, MFs shuttle the antigen to DCs and may also provide innate activation immune signals. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Dingxi Zhou ◽  
Mariana Borsa ◽  
Daniel J. Puleston ◽  
Susanne Zellner ◽  
Jesusa Capera ◽  
...  

CD4+ T cells orchestrate both humoral and cytotoxic immune responses. While it is known that CD4+ T cell proliferation relies on autophagy, direct identification of the autophagosomal cargo involved is still missing. Here, we created a transgenic mouse model, which, for the first time, enables us to directly map the proteinaceous content of autophagosomes in any primary cell by LC3 proximity labelling. IL-7Rα, a cytokine receptor mostly found in naive and memory T cells, was reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy showed increased IL-7Rα surface expression, while no defect in internalisation was observed. Mechanistically, excessive surface IL-7Rα sequestrates the common gamma chain, impairing the IL-2R assembly and downstream signalling crucial for T cell proliferation. This study provides proof-of-principle that key autophagy substrates can be reliably identified with this model to help mechanistically unravel autophagy's contribution to healthy physiology and disease.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


2009 ◽  
Vol 206 (10) ◽  
pp. 2111-2119 ◽  
Author(s):  
Ning Lu ◽  
Yi-Hong Wang ◽  
Yui-Hsi Wang ◽  
Kazuhiko Arima ◽  
Shino Hanabuchi ◽  
...  

Whether thymic stromal lymphopoietin (TSLP) directly induces potent human CD4+ T cell proliferation and Th2 differentiation is unknown. We report that resting and activated CD4+ T cells expressed high levels of IL-7 receptor a chain but very low levels of TSLP receptor (TSLPR) when compared with levels expressed in myeloid dendritic cells (mDCs). This was confirmed by immunohistology and flow cytometry analyses showing that only a subset of mDCs, with more activated phenotypes, expressed TSLPR in human tonsils in vivo. IL-7 induced strong STAT1, -3, and -5 activation and promoted the proliferation of naive CD4+ T cells in the presence of anti-CD3 and anti-CD28 monoclonal antibodies, whereas TSLP induced weak STAT5 activation, associated with marginally improved cell survival and proliferation, but failed to induce cell expansion and Th2 differentiation. The effect of TSLP on enhancing strong human T cell proliferation was observed only when sorted naive CD4+ T cells were cultured with mDCs at levels as low as 0.5%. TSLP could only induce naive CD4+ T cells to differentiate into Th2 cells in the presence of allogeneic mDCs. These results demonstrate that IL-7 and TSLP use different mechanisms to regulate human CD4+ T cell homeostasis.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 279-284 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
E Ebert ◽  
SP Hauptman

Abstract The present studies were designed to investigate the mechanism(s) of the defective T cell proliferative response to various stimuli in patients with B cell chronic lymphocytic leukemia B-CLL. In 14 patients with advanced B-CLL (stage III or IV) we found the T cell response in the autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR) to be 35.7% and 30% of the controls, respectively. Proliferation in the MLR depends upon the production of and response to interleukin 2 (IL 2), a T cell growth factor. IL 2 production in eight B-CLL patients was 22% of the control. The response to IL 2 was measured by the increase in the T cell proliferation in the MLR with the addition of IL 2. T cell proliferation in both the auto and allo MLR of CLL patients was significantly lower than in the controls after the addition of IL 2. The proliferative response of normal T cells to stimulation by CLL B cells was 50% of the control. This latter response was increased to control levels when cultures were supplemented with exogenous IL 2, suggesting that CLL B cells could stimulate IL 2 receptor generation in normal T cells in an allo MLR, but not IL 2 production. The presence of IL 2 receptors on activated T cells was directly determined using anti- Tac, a monoclonal antibody with specificity for the IL 2 receptor. Of the mitogen- or MLR-activated T cells in CLL patients, 6% and 10%, respectively, expressed Tac antigen, whereas identically stimulated control T cells were 60% and 47% Tac+, respectively. Our findings suggest that T cells in B-CLL are defective in their recognition of self or foreign major histocompatibility antigens as demonstrated by their impaired responsiveness in the MLR. Thus, these cells are unable to produce IL 2 or generate IL 2 receptors.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 300 ◽  
Author(s):  
Konstantina Antoniou ◽  
Fanny Ender ◽  
Tillman Vollbrandt ◽  
Yves Laumonnier ◽  
Franziska Rathmann ◽  
...  

Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.


2013 ◽  
Vol 1 (S1) ◽  
Author(s):  
Steven K Grossenbacher ◽  
Arta M Monjazeb ◽  
Julia Tietze ◽  
Gail D Sckisel ◽  
Annie Mirsoian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document