scholarly journals Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ana-Carolina Oliveira ◽  
João Francisco Gomes-Neto ◽  
Carlos-Henrique Dantas Barbosa ◽  
Alessandra Granato ◽  
Bernardo S Reis ◽  
...  

MyD88 is the main adaptor molecule for TLR and IL-1R family members. Here, we demonstrated that T-cell intrinsic MyD88 signaling is required for proliferation, protection from apoptosis and expression of activation/memory genes during infection with the intracellular parasite Trypanosoma cruzi, as evidenced by transcriptome and cytometry analyses in mixed bone-marrow (BM) chimeras. The lack of direct IL-18R signaling in T cells, but not of IL-1R, phenocopied the absence of the MyD88 pathway, indicating that IL-18R is a critical MyD88-upstream pathway involved in the establishment of the Th1 response against an in vivo infection, a presently controvert subject. Accordingly, Il18r1−/− mice display lower levels of Th1 cells and are highly susceptible to infection, but can be rescued from mortality by the adoptive transfer of WT CD4+ T cells. Our findings establish the T-cell intrinsic IL-18R/MyD88 pathway as a crucial element for induction of cognate Th1 responses against an important human pathogen.

2010 ◽  
Vol 207 (7) ◽  
pp. 1421-1433 ◽  
Author(s):  
Patricia A. Darrah ◽  
Sonia T. Hegde ◽  
Dipti T. Patel ◽  
Ross W. B. Lindsay ◽  
Linda Chen ◽  
...  

The quality of a Th1 response can be a prospective correlate of vaccine-mediated protection against certain intracellular pathogens. Using two distinct vaccine platforms, we evaluate the influence of interleukin (IL) 10 production on the magnitude, quality, and protective capacity of CD4+ T cell responses in the mouse model of Leishmania major infection. Multiparameter flow cytometry was used to delineate the CD4+ T cell production of interferon (IFN) γ, IL-2, tumor necrosis factor (TNF), and IL-10 (or combinations thereof) after vaccination. Immunization with a high dose of adenovirus (ADV) expressing leishmanial proteins (MML-ADV) elicited a limited proportion of multifunctional IFN-γ+IL-2+TNF+ Th1 cells, a high frequency of IL-10–producing CD4+ T cells, and did not protect against subsequent challenge. Surprisingly, in the absence of IL-10, there was no change in the magnitude, quality, or protective capacity of the Th1 response elicited by high-dose MML-ADV. In contrast, after immunization with MML protein and CpG (MML + CpG), IL-10 limited the production of IL-12 by DCs in vivo, thereby decreasing the generation of multifunctional Th1 cells. Consequently, three immunizations with MML + CpG were required for full protection. However, inhibiting IL-10 at the time of immunization enhanced the magnitude and quality of the Th1 response sufficiently to mediate protection after only a single immunization. Overall, we delineate distinct mechanisms by which vaccines elicit protective Th1 responses and underscore the importance of multifunctional CD4+ T cells.


Blood ◽  
2010 ◽  
Vol 116 (18) ◽  
pp. 3494-3504 ◽  
Author(s):  
Degui Geng ◽  
Liqin Zheng ◽  
Ratika Srivastava ◽  
Nicole Asprodites ◽  
Cruz Velasco-Gonzalez ◽  
...  

Abstract Emerging reports reveal that activating Toll-like receptor-2 (TLR2)–MyD88 signals in CD8 T lymphocytes enhances cytokine production and cytotoxicity; however, the signaling pathway remains undefined. In the present study, we examined the physiologic significance and molecular mechanisms involved in this process. We found that TLR2 engagement on T-cell receptor transgenic CD8 OT-1 T cells increased T-bet transcription factor levels consequently, augmenting effector transcript and protein levels both in vivo and in vitro. In contrast, TLR2 agonist did not costimulate TLR2−/−OT-1 or MyD88−/−OT-1 T cells. Elevated T-bet levels in TLR2-MyD88–activated T cells was a consequence of increased biosynthesis resulting from the enhanced acti- vation of the mammalian target of the rapamycin (mTOR) pathway. Inhibiting mTOR, Akt, or protein kinase C in T cells abolished the costimulatory effects of the TLR2 agonist. In vivo, activating TLR2–MyD88 signals in T cells increased effector-molecule levels and enhanced the clearance of Listeria monocytogenes-Ova. These results help define a signaling pathway linking the TLR-MyD88 and mTOR pathway in an Akt- and protein kinase C–dependent manner. These results highlight a critical role for MyD88 signaling in T-cell activation and cytotoxicity. Furthermore, these findings offer the opportunity for improving the efficacy of vaccines and T cell–based immunotherapies by targeting TLR-MyD88 signaling within T cells.


1977 ◽  
Vol 145 (1) ◽  
pp. 221-233 ◽  
Author(s):  
R L Evans ◽  
J M Breard ◽  
H Lazarus ◽  
S F Schlossman ◽  
L Chess

A heterologous antihuman T-cell serum (anti-TH1), raised against purified peripheral T cells, and absorbed with an autologous Ig+ line, was shown to bind specifically to T- but not to B-lymphoid cells by both a complement-dependent cytotoxic assay and indirect immunofluorescence. Whereas 90% fetal thymocytes and thymocytes were killed by anti-TH1 and complement, a consistently restricted population (50-60%) of peripheral T cells from several normal donors were lysed, indicating that anti-TH1 is directed against one or more thymus-specific antigens which are lost or reduced on a subpopulation of human T cells in the periphery. Functional analysis of the unreactive (TH1-) and reactive (TH1+) T-cell subclasses demonstrated that TH1- cells mounted a good proliferative response to a battery of specific soluble antigens (mumps, PPD, tetanus toxoid) but neither responded in MLC, nor elaborated LMF in response to tetanus toxoid. In contrast TH1+ cells proliferated in MLC and elaborated LMF but did not respond by 3H-incorporation to soluble antigens. The relevance of these findings to human T-cell functions in vivo and to previously described functional subclasses of murine T cells is discussed.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2256-2264 ◽  
Author(s):  
Michael Quigley ◽  
Jennifer Martinez ◽  
Xiaopei Huang ◽  
Yiping Yang

Abstract Recent advances have suggested a crucial role of the innate immunity in shaping adaptive immune responses. How activation of innate immunity promotes adaptive T-cell responses to pathogens in vivo is not fully understood. It has been thought that Toll-like receptor (TLR)–mediated control of adaptive T-cell responses is mainly achieved by the engagement of TLRs on antigen-presenting cells to promote their maturation and function. In this study, we showed that direct TLR2–myeloid differentiating factor 88 (MyD88) signaling in CD8 T cells was also required for their efficient clonal expansion by promoting the survival of activated T cells on vaccinia viral infection in vivo. Effector CD8 T cells that lacked direct TLR2-MyD88 signaling did not survive the contraction phase to differentiate into long-lived memory cells. Furthermore, we observed that direct TLR2 ligation on CD8 T cells promoted CD8 T-cell proliferation and survival in vitro in a manner dependent on the phosphatidylinositol 3-kinase (PI3K)–Akt pathway activation and that activation of Akt controlled memory cell formation in vivo. These results identify a critical role for intrinsic TLR2-MyD88 signaling and PI3K-Akt pathway activation in CD8 T-cell clonal expansion and memory formation in vivo and could lead to the development of new vaccine approaches.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Julia Loos ◽  
Samantha Schmaul ◽  
Theresa Marie Noll ◽  
Magdalena Paterka ◽  
Miriam Schillner ◽  
...  

Abstract Background T helper (Th) 17 cells are a highly plastic subset of T cells, which in the context of neuroinflammation, are able to acquire pathogenic features originally attributed to Th1 cells (resulting in so called ex-Th17 cells). Thus, a strict separation between the two T cell subsets in the context of experimental autoimmune encephalomyelitis (EAE) is difficult. High variability in culture and EAE induction protocols contributed to previous conflicting results concerning the differential contribution of Th1 and Th17 cells in EAE. Here, we systematically evaluate the role of different T cell differentiation and transfer protocols for EAE disease development and investigate the functional dynamics of encephalitogenic T cells directly within the inflamed central nervous system (CNS) tissue. Methods We compiled the currently used EAE induction protocols reported in literature and investigated the influence of the different Th1 and Th17 differentiation protocols as well as EAE induction protocols on the EAE disease course. Moreover, we assessed the cytokine profile and functional dynamics of both encephalitogenic Th1 and Th17 cells in the inflamed CNS using flow cytometry and intravital two-photon laser scanning microscopy. Lastly, we used astrocyte culture and adoptive transfer EAE to evaluate the impact of Th1 and Th17 cells on astrocyte adhesion molecule expression in vitro and in vivo. Results We show that EAE courses are highly dependent on in vitro differentiation and transfer protocols. Moreover, using genetically encoded reporter mice (B6.IL17A-EGFP.acRFP x 2d2/2d2.RFP), we show that the motility of interferon (IFN)γ-producing ex-Th17 cells more closely resembles Th1 cells than Th17 cells in transfer EAE. Mechanistically, IFNγ-producing Th1 cells selectively induce the expression of cellular adhesion molecules I-CAM1 while Th1 as well as ex-Th17 induce V-CAM1 on astrocytes. Conclusions The behavior of ex-Th17 cells in EAE lesions in vivo resembles Th1 rather than Th17 cells, underlining that their change in cytokine production is associated with functional phenotype alterations of these cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1893-1893
Author(s):  
Ji-Young Lim ◽  
Dae-Chul Jeong ◽  
Hyewon Youn ◽  
Eun-Young Choi ◽  
Chang-Ki Min

Abstract Abstract 1893 The therapeutic potential of allogeneic hematopoietic stem cell transplantation (allo-HSCT) relies on the graft-versus-leukemia effect (GVL) to eradicate residual tumor cells by immunologic mechanisms. However, graft-versus-host disease (GVHD) remains the major toxicity of allo-HSCT. Alloreactive donor T cells are important effector cells in the development of GVHD, and proinflammatory cytokines enhance the generation of donor antihost cytotoxic function. Myeloid differentiation factor (MyD88) is a cytoplasmic adaptor molecule essential for integrating and transducing the signals generated by the Toll-like receptor (TLR) family. TLR engagement on professional antigen-presenting cells induces their maturation, resulting in optimal T-cell activation. However, recent advances indicate that the adjuvant effects of certain TLR agonists may also be attributed to the activation of TLRs and MyD88 directly in T cells. Both CD4 and CD8 T cells express functional TLRs. It remains to be defined whether direct TLR signaling on donor T cells is critical for GVHD or GVL activity. We used C57BL/6 (H-2b) → B6D2F1 (H-2b/d) experimental allo-HSCT model, which differs at major and minor histocompatibility loci, to address the role of donor T cell MyD88 signaling on GVHD and GVL. Lethally irradiated recipient mice were transplanted TCD-BM (5 × 106) together with either wild-type (WT) or MyD88 knock out (KO) mice spleen T cells (1 × 106) on day 0 and then host-type P815 mastocytoma or L1210 leukemia (H-2d) cells were injected either intravenously (3 × 103) or subcutaneously (1 × 106) on day 1 to generate a GVHD/GVL model. First of all, clinical GVHD scores were comparable between recipients of WT T cells and MyD88 KO T cells. At 70 days post-allo-HSCT, 50 % of allogeneic recipients of WT T cells died due to severe GVHD, but necropsy showed no evidence of tumor. In contrast, 83.5% of those of MyD88 KO T cells died with gross evidence of tumors (P<.05). Moreover, subcutaneous tumors in the allogeneic recipients receiving MyD88 KO T cells exhibited markedly increased growth in vivo compared to those receiving WT T cells (tumor volume on day 41, 15205.6 vs. 373.9 mm3, P<.01). GVHD mortality is critically dependent on donor CD4 T cells in this donor/recipient strain combination (B6 → B6D2F1) and CD8 T cells that mediate cytotoxicity are more potent effectors of GVL. The percentages of donor T cells to undergo proliferation or apoptosis in response to alloantigens in vivo between the two T cell types was examined; apoptosis of CD8 T cells in recipients of MyD88 KO T cells was significantly enhanced compared to those of WT T cell recipients (P<.01) whereas apoptosis of CD4 T cells was comparable between two groups. Resultingly, the percentages of CD8 T cells in recipients of MyD88 KO T cells were significantly lower (P<.01). We next examined the effects of MyD88 signaling in donor T cells on cytolytic activity to host antigens. Splenocytes harvested from WT mice showed stronger cytolytic activity against P815 targets compared to those from MyD88 KO mice (P<.01). After allogeneic mixed leukocyte reaction, responder T cells from MyD88 KO mice showed markedly reduced IFN-γ, MCP-1 and IL-17A production with a significant augmentation in IL-10 secretion. We further evaluated the effect of T-cell MyD88 deficiency on GVL mediated by the intensity of total body irradiation (TBI) conditioning (1300 vs. 900 cGy, Exp Hematol 2011; 39: 1018–29). Enhanced GVL in the allogeneic recipients receiving 1300 cGy TBI was not shown in the recipients of MyD88 KO T cells. In summary, these results highlight a critical role for MyD88 signaling in T-cell activation and cytotoxicity, offering the opportunity for improving GVL activity by targeting TLR-MyD88 signaling within donor T cells. Furthermore, these data demonstrated that MyD88 deficiency in T cells can impair cytolytic function or subsequent GVL activity of CD8 T cells without significant change in the severity of CD4-dependent GVHD. This difference is attributed to the fact that MyD88 deficiency in T cells causes an enhanced apoptosis of donor CD8 T cells but not donor CD4 T cells in vivo after HSCT. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


Leukemia ◽  
2021 ◽  
Author(s):  
Kinan Alhallak ◽  
Jennifer Sun ◽  
Katherine Wasden ◽  
Nicole Guenthner ◽  
Julie O’Neal ◽  
...  

AbstractT-cell-based immunotherapy, such as CAR-T cells and bispecific T-cell engagers (BiTEs), has shown promising clinical outcomes in many cancers; however, these therapies have significant limitations, such as poor pharmacokinetics and the ability to target only one antigen on the cancer cells. In multiclonal diseases, these therapies confer the development of antigen-less clones, causing tumor escape and relapse. In this study, we developed nanoparticle-based bispecific T-cell engagers (nanoBiTEs), which are liposomes decorated with anti-CD3 monoclonal antibodies (mAbs) targeting T cells, and mAbs targeting the cancer antigen. We also developed a nanoparticle that targets multiple cancer antigens by conjugating multiple mAbs against multiple cancer antigens for T-cell engagement (nanoMuTEs). NanoBiTEs and nanoMuTEs have a long half-life of about 60 h, which enables once-a-week administration instead of continuous infusion, while maintaining efficacy in vitro and in vivo. NanoMuTEs targeting multiple cancer antigens showed greater efficacy in myeloma cells in vitro and in vivo, compared to nanoBiTEs targeting only one cancer antigen. Unlike nanoBiTEs, treatment with nanoMuTEs did not cause downregulation (or loss) of a single antigen, and prevented the development of antigen-less tumor escape. Our nanoparticle-based immuno-engaging technology provides a solution for the major limitations of current immunotherapy technologies.


Sign in / Sign up

Export Citation Format

Share Document