scholarly journals Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics

2020 ◽  
Vol 5 (44) ◽  
pp. eaay6017 ◽  
Author(s):  
Hamad Alshetaiwi ◽  
Nicholas Pervolarakis ◽  
Laura Lynn McIntyre ◽  
Dennis Ma ◽  
Quy Nguyen ◽  
...  

Myeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the capacity to suppress adaptive immune responses during cancer. It remains elusive how MDSCs differ from their normal myeloid counterparts, which limits our ability to specifically detect and therapeutically target MDSCs during cancer. Here, we sought to determine the molecular features of breast cancer–associated MDSCs using the widely studied mouse model based on the mouse mammary tumor virus (MMTV) promoter–driven expression of the polyomavirus middle T oncoprotein (MMTV-PyMT). To identify MDSCs in an unbiased manner, we used single-cell RNA sequencing to compare MDSC-containing splenic myeloid cells from breast tumor–bearing mice with wild-type controls. Our computational analysis of 14,646 single-cell transcriptomes revealed that MDSCs emerge through an aberrant neutrophil maturation trajectory in the spleen that confers them an immunosuppressive cell state. We establish the MDSC-specific gene signature and identify CD84 as a surface marker for improved detection and enrichment of MDSCs in breast cancers.

2019 ◽  
Author(s):  
Hamad Alshetaiwi ◽  
Nicholas Pervolarakis ◽  
Laura Lynn McIntyre ◽  
Dennis Ma ◽  
Quy Nguyen ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the capacity to suppress adaptive immune responses during cancer. It remains elusive how MDSCs differ from their normal myeloid counterparts, which limits our ability to specifically detect and therapeutically target MDSCs during cancer. Here, we used single-cell RNAseq to compare MDSC-containing splenic myeloid cells from breast tumor-bearing mice to wildtype controls. Our computational analysis of 14,646 single-cell transcriptomes reveals that MDSCs emerge through a previously unrealized aberrant neutrophil maturation trajectory in the spleen giving rise to a unique chemokine-responsive, immunosuppressive cell state that strongly differs from normal myeloid cells. We establish the first MDSC-specific gene signature and identify novel surface markers for improved detection and enrichment of MDSCs in murine and human samples. Our study provides the first single-cell transcriptional map defining the development of MDSCs, which will ultimately enable us to specifically target these cells in cancer patients.One Sentence SummaryWe used single cell transcriptomics to identify the unique molecular features distinguishing myeloid-derived suppressor cells (MDSCs) from their normal, myeloid counterparts, which enabled us to reveal distinct transitory gene expression changes during their maturation in the spleen, and to identify novel cell surface markers for improved detection and isolation of MDSCs.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1627 ◽  
Author(s):  
Anita Thyagarajan ◽  
Mamdouh Salman A. Alshehri ◽  
Kelly L.R. Miller ◽  
Catherine M. Sherwin ◽  
Jeffrey B. Travers ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) remains a devastating human malignancy with poor prognosis and low survival rates. Several cellular mechanisms have been linked with pancreatic carcinogenesis and also implicated in inducing tumor resistance to known therapeutic regimens. Of various factors, immune evasion mechanisms play critical roles in tumor progression and impeding the efficacy of cancer therapies including PDAC. Among immunosuppressive cell types, myeloid-derived suppressor cells (MDSCs) have been extensively studied and demonstrated to not only support PDAC development but also hamper the anti-tumor immune responses elicited by therapeutic agents. Notably, recent efforts have been directed in devising novel approaches to target MDSCs to limit their effects. Multiple strategies including immune-based approaches have been explored either alone or in combination with therapeutic agents to target MDSCs in preclinical and clinical settings of PDAC. The current review highlights the roles and mechanisms of MDSCs as well as the implications of this immunomodulatory cell type as a potential target to improve the efficacy of therapeutic regimens for PDAC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jane Bayani ◽  
Coralie Poncet ◽  
Cheryl Crozier ◽  
Anouk Neven ◽  
Tammy Piper ◽  
...  

AbstractMale breast cancer (BCa) is a rare disease accounting for less than 1% of all breast cancers and 1% of all cancers in males. The clinical management is largely extrapolated from female BCa. Several multigene assays are increasingly used to guide clinical treatment decisions in female BCa, however, there are limited data on the utility of these tests in male BCa. Here we present the gene expression results of 381 M0, ER+ve, HER2-ve male BCa patients enrolled in the Part 1 (retrospective analysis) of the International Male Breast Cancer Program. Using a custom NanoString™ panel comprised of the genes from the commercial risk tests Prosigna®, OncotypeDX®, and MammaPrint®, risk scores and intrinsic subtyping data were generated to recapitulate the commercial tests as described by us previously. We also examined the prognostic value of other risk scores such as the Genomic Grade Index (GGI), IHC4-mRNA and our prognostic 95-gene signature. In this sample set of male BCa, we demonstrated prognostic utility on univariate analysis. Across all signatures, patients whose samples were identified as low-risk experienced better outcomes than intermediate-risk, with those classed as high risk experiencing the poorest outcomes. As seen with female BCa, the concordance between tests was poor, with C-index values ranging from 40.3% to 78.2% and Kappa values ranging from 0.17 to 0.58. To our knowledge, this is the largest study of male breast cancers assayed to generate risk scores of the current commercial and academic risk tests demonstrating comparable clinical utility to female BCa.


Author(s):  
E. Amiri Souri ◽  
A. Chenoweth ◽  
A. Cheung ◽  
S. N. Karagiannis ◽  
S. Tsoka

Abstract Background Prognostic stratification of breast cancers remains a challenge to improve clinical decision making. We employ machine learning on breast cancer transcriptomics from multiple studies to link the expression of specific genes to histological grade and classify tumours into a more or less aggressive prognostic type. Materials and methods Microarray data of 5031 untreated breast tumours spanning 33 published datasets and corresponding clinical data were integrated. A machine learning model based on gradient boosted trees was trained on histological grade-1 and grade-3 samples. The resulting predictive model (Cancer Grade Model, CGM) was applied on samples of grade-2 and unknown-grade (3029) for prognostic risk classification. Results A 70-gene signature for assessing clinical risk was identified and was shown to be 90% accurate when tested on known histological-grade samples. The predictive framework was validated through survival analysis and showed robust prognostic performance. CGM was cross-referenced with existing genomic tests and demonstrated the competitive predictive power of tumour risk. Conclusions CGM is able to classify tumours into better-defined prognostic categories without employing information on tumour size, stage, or subgroups. The model offers means to improve prognosis and support the clinical decision and precision treatments, thereby potentially contributing to preventing underdiagnosis of high-risk tumours and minimising over-treatment of low-risk disease.


2018 ◽  
Vol 234 (4) ◽  
pp. 3515-3525 ◽  
Author(s):  
Elham Safarzadeh ◽  
Shahryar Hashemzadeh ◽  
Pascal H.G. Duijf ◽  
Behzad Mansoori ◽  
Vahid Khaze ◽  
...  

2020 ◽  
Author(s):  
S. Mahnaz ◽  
L. Das Roy ◽  
M. Bose ◽  
C. De ◽  
S. Nath ◽  
...  

ABSTRACTMyeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing pancreatic ductal adenocarcinoma KCKO and breast cancer C57MG xenografts. We observed enhanced tumor growth in MUC1KO mice compared to WT mice in both pancreatic KCKO and breast C57MG cancer models due to increased MDSC population and enrichment of Tregs in tumor microenvironment. Our current study shows that knockdown of MUC1 in MDSCs promotes proliferation and immature suppressive phenotype indicated by increased level of iNOS, ARG1 activity and TGF-β secretion under cancer conditions. Increased activity of MDSCs leads to repression of IL-2 and IFN-ɣ production by T-cells. We were able to find that MDSCs from MUC1KO mice have higher levels of c-Myc and activated pSTAT3 as compared to MUC1 WT mice, that are signaling pathways leading to increased survival, proliferation and prevention of maturation. In summary, MUC1 regulates signaling pathways that maintain immunosuppressive properties of MDSCs. Thus, immunotherapy must target only tumor associated MUC1 on epithelial cells and not MUC1 on hematopoietic cells to avoid expansion and suppressive functions of MDSC.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Xiao Z Shen ◽  
Peng Shi ◽  
Jorge Giani ◽  
Ellen Bernstein ◽  
Kenneth E Bernstein

The immune system plays a critical role in the development of hypertension. The immune response consists of pro-inflammatory cells, but also immunosuppressive cells that reduce T cell function. An important category of natural immunosuppressive cell is myeloid-derived suppressor cells (MDSC). We now show that blood and spleen CD11b+ Gr1+ myeloid cells are elevated 2-fold in both angiotensin II and L-NAME induced hypertension. These increased myeloid cells are MDSC in that they elevate IL-4R expression and suppress T cell proliferation. When hypertensive mice were depleted of MDSC, using either anti-Gr1 antibody or gemcitabine, there was a 15 mmHg rise in blood pressure and aggravation of T cells activation with increased production of IFN-γ, TNFα and IL-17 in both spleen and kidney. In contrast, adoptive transfer of MDSC reduced blood pressure in angiotensin-II induced hypertension by 25 mmHg (see Figure). These data suggest a new concept, that the accumulation of MDSC is a compensatory response to the inflammation induced by hypertension. They also indicate that MDSC play an important role in regulating blood pressure.


2005 ◽  
Vol 91 (6) ◽  
pp. 505-512 ◽  
Author(s):  
Antonino Musolino ◽  
Maria Michiara ◽  
Maria A. Bella ◽  
Nadia Naldi ◽  
Paola Zanelli ◽  
...  

Purpose To evaluate the clinical features of breast cancer patients with genetic susceptibility to this disease and to investigate the contribution of BRCA1 germline mutations to the phenotype of these tumors. Patients and Methods We reviewed the clinical and pathological records of 102 women with suspected inherited susceptibility to breast cancer consecutively seen at the Genetic Oncology Service of Parma, Italy. Sixty-two patients with a high probability of harboring a germline, cancer-predisposing mutation were tested for BRCA1 mutations. Exon 11 was screened using the protein truncation test and detected mutations were confirmed by direct sequencing (DS). All other exons were analyzed by DS. Results Among the 62 patients with a completed mutation analysis, 48 (77.4%) had wild-type BRCA1, six (9.6%) had variants of unclear significance, eight (13%) had deleterious mutations. BRCA1-associated breast cancers (BABC) were significantly less likely to be diagnosed at stage I than breast cancers in women without mutations (12.5% vs 51%; P = 0.045), more likely to have a high proliferation rate (100% vs 24%, P<0.001), and more likely to be histological grade 3 (100% vs 14%, P<0.001), estrogen and progesterone receptor negative (87.5% vs 13%, P<0.001; 75% vs 23%, P = 0.004), and p53 positive (87.5% vs 30%, P = 0.023). All tumors with BRCA1 mutations were HER-2/neu negative compared with 57% of the non-BRCA1 tumors ( P = 0.04). There were no significant differences between BABC and non-BABC in 20-year relapse-free survival, 20-year event-free survival, and 20-year overall survival. Conclusion In this population-based study, BABC seems to present with adverse molecular features when compared with non-BABC, although the prognosis appears to be similar.


Sign in / Sign up

Export Citation Format

Share Document