scholarly journals STING mediates immune responses in the closest living relatives of animals

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Arielle Woznica ◽  
Ashwani Kumar ◽  
Carolyn R Sturge ◽  
Chao Xing ◽  
Nicole King ◽  
...  

Animals have evolved unique repertoires of innate immune genes and pathways that provide their first line of defense against pathogens. To reconstruct the ancestry of animal innate immunity, we have developed the choanoflagellate Monosiga brevicollis, one of the closest living relatives of animals, as a model for studying mechanisms underlying pathogen recognition and immune response. We found that M. brevicollis is killed by exposure to Pseudomonas aeruginosa bacteria. Moreover, M. brevicollis expresses STING, which, in animals, activates innate immune pathways in response to cyclic dinucleotides during pathogen sensing. M. brevicollis STING increases the susceptibility of M. brevicollis to P. aeruginosa-induced cell death and is required for responding to the cyclic dinucleotide 2'3' cGAMP. Furthermore, similar to animals, autophagic signaling in M. brevicollis is induced by 2'3' cGAMP in a STING-dependent manner. This study provides evidence for a pre-animal role for STING in antibacterial immunity and establishes M. brevicollis as a model system for the study of immune responses.

2021 ◽  
Author(s):  
Arielle Woznica ◽  
Ashwani Kumar ◽  
Carolyn R Sturge ◽  
Chao Xing ◽  
Nicole King ◽  
...  

Animals have evolved unique repertoires of innate immune genes and pathways that provide their first line of defense against pathogens. To reconstruct the ancestry of animal innate immunity, we have developed the choanoflagellate Monosiga brevicollis, one of the closest living relatives of animals, as a model for studying mechanisms underlying pathogen recognition and immune response. We found that M. brevicollis is killed by exposure to Pseudomonas aeruginosa bacteria and selectively avoids ingesting them. Moreover, M. brevicollis expresses STING, which, in animals, activates innate immune pathways in response to cyclic dinucleotides during pathogen sensing. M. brevicollis STING increases the susceptibility of M. brevicollis to P. aeruginosa-induced cell death and is required for responding to the cyclic dinucleotide 2'3' cGAMP. Furthermore, similar to animals, autophagic signaling in M. brevicollis is induced by 2'3' cGAMP in a STING-dependent manner. This study provides evidence for a pre-animal role for STING in antibacterial immunity and establishes M. brevicollis as a model system for the study of immune responses.


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 518-518
Author(s):  
G. T. Cousillas ◽  
W. J. Weber ◽  
B. Walcheck ◽  
D. E. Kerr ◽  
T. H. Elsasser ◽  
...  

Author(s):  
Wanhai Qin ◽  
Xanthe Brands ◽  
Cornelis Veer ◽  
Alex F. Vos ◽  
Brendon P. Scicluna ◽  
...  

Genetics ◽  
2021 ◽  
Author(s):  
Xiaofen Wu ◽  
Kongyan Niu ◽  
Xiaofan Wang ◽  
Jing Zhao ◽  
Han Wang ◽  
...  

Abstract Inflammaging refers to low-grade, chronically activated innate immunity that has deleterious effects on healthy lifespan. However, little is known about the intrinsic signaling pathway that elicits innate immune genes during aging. Here using Drosophila melanogaster, we profile the microRNA targetomes in young and aged animals, and reveal Dawdle (Daw), an activin-like ligand of the TGF-β pathway, as a physiological target of microRNA-252 (miR-252). We show that miR-252 cooperates with Forkhead box O (FoxO), a conserved transcriptional factor implicated in aging, to repress Daw. Unopposed Daw triggers hyper activation of innate immune genes coupled with a decline in organismal survival. Using adult muscle tissues, single-cell sequencing analysis describes that Daw and its downstream innate immune genes are expressed in distinct cell types, suggesting a cell non-autonomous mode of regulation. We further determine the genetic cascade by which Daw signaling leads to increased Kenny/IKKγ protein, which in turn activates Relish/NF-κB protein and consequentially innate immune genes. Finally, transgenic increase of miR-252 and FoxO pathway factors in wild-type Drosophila extends lifespan and mitigates the induction of innate immune genes in aging. Together, we propose that miR-252 and FoxO promote healthy longevity by cooperative inhibition on Daw mediated inflammaging.


2021 ◽  
Author(s):  
Phillip Wibisono ◽  
Shawndra Wibisono ◽  
Jan Watteyne ◽  
Chia-Hui Chen ◽  
Durai Sellegounder ◽  
...  

A key question in current immunology is how the innate immune system generates high levels of specificity. Like most invertebrates, Caenorhabditis elegans does not have an adaptive immune system and relies solely on innate immunity to defend itself against pathogen attacks, yet it can still differentiate different pathogens and launch distinct innate immune responses. Here, we have found that functional loss of NMUR-1, a neuronal GPCR homologous to mammalian receptors for the neuropeptide neuromedin U, has diverse effects on C. elegans survival against various bacterial pathogens. Transcriptomic analyses and functional assays revealed that NMUR-1 modulates C. elegans transcription activity by regulating the expression of transcription factors, which, in turn, controls the expression of distinct immune genes in response to different pathogens. Our study has uncovered a molecular basis for the specificity of C. elegans innate immunity that could provide mechanistic insights into understanding the specificity of vertebrate innate immunity.


Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Gavin K. Paterson ◽  
Tim J. Mitchell

The innate immune system provides a non-specific first line of defence against microbes and is crucial both in the development and effector stages of subsequent adaptive immune responses. Consistent with its importance, study of the innate immune system is a broad and fast-moving field. Here we provide an overview of the recent key advances made in this area with relation to the important pathogen Streptococcus pneumoniae (the pneumococcus).


2017 ◽  
Author(s):  
Song-Hua Lee ◽  
Shizue Omi ◽  
Nishant Thakur ◽  
Clara Taffoni ◽  
Jérôme Belougne ◽  
...  

ABSTRACTWhen an animal is infected, its innate immune response needs to be tightly regulated across tissues and coordinated with other aspects of organismal physiology. Previous studies with Caenorhabditis elegans have demonstrated that insulin-like peptide genes are differentially expressed in response to different pathogens. They represent prime candidates for conveying signals between tissues upon infection. Here, we focused on one such gene, ins-11 and its potential role in mediating cross-tissue regulation of innate immune genes. While diverse bacterial intestinal infections can trigger the up-regulation of ins-11 in the intestine, we show that epidermal infection with the fungus Drechmeria coniospora triggers an upregulation of ins-11 in the epidermis. Using the Shigella virulence factor OpsF, a MAP kinase inhibitor, we found that in both cases, ins-11 expression is controlled cell autonomously by p38 MAPK, but via distinct transcription factors, STA-2/STAT in the epidermis and HLH-30/TFEB in the intestine. We established that ins-11, and the insulin signaling pathway more generally, are not involved in the regulation of antimicrobial peptide gene expression in the epidermis. The up-regulation of ins-11 in the epidermis does, however, affect intestinal gene expression in a complex manner, and has a deleterious effect on longevity. These results support a model in which insulin signaling, via ins-11, contributes to the coordination of the organismal response to infection, influencing the allocation of resources in an infected animal.


2014 ◽  
Vol 82 (12) ◽  
pp. 5076-5085 ◽  
Author(s):  
Hua Ren ◽  
Yunfei Teng ◽  
Binghe Tan ◽  
Xiaoyu Zhang ◽  
Wei Jiang ◽  
...  

ABSTRACTExtracellular ATP (eATP), released as a “danger signal” by injured or stressed cells, plays an important role in the regulation of immune responses, but the relationship between ATP release and innate immune responses is still uncertain. In this study, we demonstrated that ATP was released through Toll-like receptor (TLR)-associated signaling in bothEscherichia coli-infected mice and lipopolysaccharide (LPS)- or Pam3CSK4-treated macrophages. This ATP release could be blocked completely only byN-ethylmaleimide (NEM), not by carbenoxolone (CBX), flufenamic acid (FFA), or probenecid, suggesting the key role of exocytosis in this process. Furthermore, LPS-induced ATP release could also be reduced dramatically through suppressing calcium mobilization by use of U73122, caffeine, and thapsigargin (TG). In addition, the secretion of interleukin-1β (IL-1β) and CCL-2 was enhanced significantly by ATP, in a time- and dose-dependent manner. Meanwhile, macrophage-mediated phagocytosis of bacteria was also promoted significantly by ATP stimulation. Furthermore, extracellular ATP reduced the number of invading bacteria and protected mice from peritonitis by activating purinergic receptors. Mechanistically, phosphorylation of AKT and ERK was overtly increased by ATP in antibacterial immune responses. Accordingly, if we blocked the P2X- and P2Y-associated signaling pathway by using suramin and pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid), tetrasodium salt (PPADS), the ATP-enhanced immune response was restrained significantly. Taken together, our findings reveal an internal relationship between danger signals and TLR signaling in innate immune responses, which suggests a potential therapeutic significance of calcium mobilization-mediated ATP release in infectious diseases.


Author(s):  
Katja Koeppen ◽  
Amanda B Nymon ◽  
Roxanna Barnaby ◽  
Zhongyou Li ◽  
Thomas H Hampton ◽  
...  

Mutations in CFTR alter macrophage responses, for example, by reducing their ability to phagocytose and kill bacteria. Altered macrophage responses may facilitate bacterial infection and inflammation in the lungs, contributing to morbidity and mortality in cystic fibrosis (CF). Extracellular vesicles (EVs) are secreted by multiple cell types in the lungs and participate in the host immune response to bacterial infection, but the effect of EVs secreted by CF airway epithelial cells (AEC) on CF macrophages is unknown. This report examines the effect of EVs secreted by primary AEC on monocyte derived macrophages (MDM) and contrasts responses of CF and WT MDM. We found that EVs generally increase pro-inflammatory cytokine secretion and expression of innate immune genes in MDM, especially when EVs are derived from AEC exposed to Pseudomonas aeruginosa, and that this effect is attenuated in CF MDM. Specifically, EVs secreted by P. aeruginosa exposed AEC induced immune response genes and increased secretion of pro-inflammatory cytokines, chemoattractants and chemokines involved in tissue repair by WT MDM, but these effects were less robust in CF MDM. We attribute attenuated responses by CF MDM to differences between CF and WT macrophages because EVs secreted by CF AEC or WT AEC elicited similar responses in CF MDM. Our findings demonstrate the importance of AEC EVs in macrophage responses and show that the Phe508del mutation in CFTR attenuates the innate immune response of MDM to EVs.


Sign in / Sign up

Export Citation Format

Share Document