Effects of an organotin compound on radiation-induced reactions of extreme-ultraviolet resists utilizing polarity change and radical crosslinking

2018 ◽  
Vol 58 (1) ◽  
pp. 016504 ◽  
Author(s):  
Satoshi Enomoto ◽  
Takumi Yoshino ◽  
Kohei Machida ◽  
Takahiro Kozawa
2021 ◽  
Author(s):  
André Philippi-Kobs ◽  
Leonard Müller ◽  
Magnus Berntsen ◽  
Wojciech Roseker ◽  
Matthias Riepp ◽  
...  

Abstract Ultrashort and intense extreme ultraviolet (XUV) and X-ray pulses readily available at free-electron lasers (FELs) enable studying non-linear light−matter interactions on femtosecond timescales. Here, we report on the non-linear fluence dependence of magnetic scattering of Co/Pt multilayers, using FERMI FEL’s 70-fs-long single and double XUV pulses, the latter with a temporal separation of 200 fs, with a photon energy slightly detuned to the Co M2,3 absorption edge. We observe a quenching in magnetic scattering that sets-in already in the non-destructive fluence regime of a few mJ/cm² typically used for FEL-probe experiments on magnetic materials. Calculations of the transient electronic structure in tandem with a phenomenological modeling of the experimental data by means of ultrafast demagnetization unambiguously show that XUV-radiation-induced demagnetization is the dominant mechanism for the quenching in the investigated fluence regime of <50 mJ/cm², while light-induced changes of the electronic core levels are predicted to additionally occur at higher fluences. The modeling of the data further indicates that the demagnetization proceeds on the sub-20-fs timescale. This ultrashort timescale is consistent with non-coherent models for ultrafast demagnetization, considering the sub-femtosecond lifetime of hot electrons with energies of a few 10 eV generated by the XUV radiation.


Author(s):  
L. E. Klebanoff ◽  
W. M. Clift ◽  
M. E. Malinowski ◽  
C. Steinhaus ◽  
P. Grunow ◽  
...  

Author(s):  
Tomoe Otsuka ◽  
Yusa Muroya ◽  
Takuya Ikeda ◽  
Yoshitaka Komuro ◽  
Daisuke Kawana ◽  
...  

Abstract Metal oxide nanocluster resists have recently attracted considerable attention for use in extreme ultraviolet (EUV) lithography. To obtain sophisticated guidelines for material design, it is necessary to understand well the radiation-induced chemical reaction scheme including the insolubilization mechanism. In this study, the production of CO2, which is considered to be one of the end products of treatment with an ionizing radiation, was investigated for eight types of carboxylic acid under various conditions using -rays (60Co) as a radiation source. The amount of CO2 produced was measured by gas chromatography (GC). GCO2 (/100 eV), which indicates decarboxylation efficiency, was evaluated. CO2 was generated through electron addition, hole transfer, and hydroxyl radical addition to the molecular and ionic forms of carboxylic acids. The dependences of GCO2 on reaction partners were clarified. The dependences of GCO2 on the molecular structure and dissociative state of carboxylic acids were also clarified.


Langmuir ◽  
2008 ◽  
Vol 24 (18) ◽  
pp. 10402-10406 ◽  
Author(s):  
Liqin Ge ◽  
Keiji Nagai ◽  
ZhongZe Gu ◽  
Yoshinori Shimada ◽  
Hiroaki Nishimura ◽  
...  

Author(s):  
T. Mukai ◽  
T. E. Mitchell

Radiation-induced homogeneous precipitation in Ni-Be alloys was recently observed by high voltage electron microscopy. A coupling of interstitial flux with solute Be atoms is responsible for the precipitation. The present investigation further shows that precipitation is also induced at thin foil surfaces by electron irradiation under a high vacuum.


Author(s):  
Robert C. Rau ◽  
John Moteff

Transmission electron microscopy has been used to study the thermal annealing of radiation induced defect clusters in polycrystalline tungsten. Specimens were taken from cylindrical tensile bars which had been irradiated to a fast (E > 1 MeV) neutron fluence of 4.2 × 1019 n/cm2 at 70°C, annealed for one hour at various temperatures in argon, and tensile tested at 240°C in helium. Foils from both the unstressed button heads and the reduced areas near the fracture were examined.Figure 1 shows typical microstructures in button head foils. In the unannealed condition, Fig. 1(a), a dispersion of fine dot clusters was present. Annealing at 435°C, Fig. 1(b), produced an apparent slight decrease in cluster concentration, but annealing at 740°C, Fig. 1(C), resulted in a noticeable densification of the clusters. Finally, annealing at 900°C and 1040°C, Figs. 1(d) and (e), caused a definite decrease in cluster concentration and led to the formation of resolvable dislocation loops.


Author(s):  
M. L. Knotek

Modern surface analysis is based largely upon the use of ionizing radiation to probe the electronic and atomic structure of the surfaces physical and chemical makeup. In many of these studies the ionizing radiation used as the primary probe is found to induce changes in the structure and makeup of the surface, especially when electrons are employed. A number of techniques employ the phenomenon of radiation induced desorption as a means of probing the nature of the surface bond. These include Electron- and Photon-Stimulated Desorption (ESD and PSD) which measure desorbed ionic and neutral species as they leave the surface after the surface has been excited by some incident ionizing particle. There has recently been a great deal of activity in determining the relationship between the nature of chemical bonding and its susceptibility to radiation damage.


Sign in / Sign up

Export Citation Format

Share Document