The Evaluation of Recyclability with the Barrier Properties of Paper Based Packaging Material

Author(s):  
Yong-Ju Lee ◽  
Dong-Gun Lim ◽  
Yoo-Bin Son ◽  
Ji-Min Lee ◽  
Na-Young Park ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9569-9574
Author(s):  
Marta Kaźmierczak ◽  
Tomasz P. Olejnik ◽  
Magdalena Kmiotek

In some respects the safest food packaging material is paper that is completely free of chemical additives, made only from primary cellulosic fibers. There is no information in the literature on giving paper barrier properties using nanocellulose without any additives, especially bacterial cellulose, by applying a coating to a fibrous semi-product. In order to prepare paper-layered composites, paper sheets made of beaten or non-beaten softwood or hardwood cellulose pulp, or their 50/50 (wt./wt.) mix, were used in the experiment. After the application of bacterial cellulose onto the sheets, the paper became completely impermeable to air, which means that fine microbial fibers had filled the voids (pores) between plant cellulose fibers. The results of the experiment could be regarded as a perfect, biodegradable packaging material.


2019 ◽  
Vol 33 (3) ◽  
pp. 347-361 ◽  
Author(s):  
Vesna Ocelić Bulatović ◽  
Anamarija Turković ◽  
Emi Govorčin Bajsić ◽  
Romana Zovko ◽  
Antun Jozinović ◽  
...  

Low-density polyethylene (LDPE) is extensively used as packaging material, and as such has a short service life, but long environmental persistence. The alternative to reducing the impact of LDPE as packaging material on the environment is to blend it with carbohydrate-based polymers, like starch. Therefore, the focus of this investigation was to prepare bio-based blends of LDPE and thermoplastic starch (TPS) containing different amounts of TPS using a Brabender kneading chamber. Due to incompatibility of LDPE/ TPS blends, a styrene–ethylene/butylene–styrene block copolymer, grafted with maleic anhydride (SEBS-g-MA) containing 2 mol % anhydride groups, was added as a compatibilizer. The effect of the biodegradable, hydrophilic TPS, its content, and the incorporation of the compatibilizer on the properties of LDPE/TPS blends were analysed. The characterization was performed by means of thermogravimetric analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and water absorption (WA). Based on the results of the morphological structure, a good dispersion of the TPS phase in LDPE matrix was obtained with the incorporation of compatibilizer, which resulted in better thermal and barrier properties of these materials.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2760
Author(s):  
Bich-Nam Jung ◽  
Hyun-Wook Jung ◽  
Dong-Ho Kang ◽  
Gi-Hong Kim ◽  
Jin-Kie Shim

Polypropylene (PP) has poor oxygen barrier properties, therefore it is manufactured in a multi-layer structure with other plastics and metals, and has been widely used as a packaging material in various industries from food and beverage to pharmaceuticals. However, multi-layered packaging materials are generally low in recyclability and cause serious environmental pollution, therefore we have faced the challenge of improving the oxygen barrier performance as a uni-material. In this work, PP/nanoclay nanocomposites were prepared at nanoclay contents ranging from 0.8 to 6.4 wt% by the biaxial stretching method, performed through a sequential stretching method. It was observed that, as the draw ratio increased, the behavior of the agglomerates of the nanoclay located in the PP matrix changed and the nanoclay was dispersed along the second stretching direction. Oxygen barrier properties of PP/nanoclay nanocomposites are clearly improved due to this dispersion effect. As the biaxial stretching ratio and the content of nanoclay increased, the oxygen permeability value of the PP/nanoclay nanocomposite decreased to 43.5 cc·mm/m2·day·atm, which was reduced by about 64% compared to PP. Moreover, even when the relative humidity was increased from 0% to 90%, the oxygen permeability values remained almost the same without quality deterioration. Besides these properties, we also found that the mechanical and thermal properties were also improved. The biaxially-stretched PP/nanoclay nanocomposite fabricated in this study is a potential candidate for the replacement of the multi-layered packaging material used in the packaging fields.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5118-5132
Author(s):  
Rudi Dungani ◽  
Ihak Sumardi ◽  
Yoyo Suhaya ◽  
Pingkan Aditiawati ◽  
Safar Dody ◽  
...  

In recent times, the indiscriminate disposal of post-consumer plastic packaging material has received global attention. There is a need to develop an alternative packaging material from bio-based polymers to reduce plastic waste pollution. This work studied the effects of loading seaweed nanoparticles into an agar matrix by analyzing the physical, mechanical, water vapor barrier, and biodegradation properties, as well as the surface morphological properties of biopolymer composite. The results showed that the addition of seaweed nanoparticles in the biopolymer matrix improved the properties of the agar-based biopolymer composite, except for the water vapor barrier properties of the biopolymer composite. The biopolymer composite film loaded with 6 w/w% seaweed nanoparticles appeared to achieve the highest mechanical strength. In addition, scanning electron microscopy analysis verified that the 6% w/w% seaweed nanoparticles biopolymer composite showed a homogenous surface morphology and had a strong adhesion on the interfaces of the filler and matrix. The samples had a desirable density of 0.0131 cm-1g-1 and a desirable biodegradability when 8 w/w% nanoparticles was used. This study verified that seaweed nanoparticles are compatible with agar matrix in terms of the enhancement of biopolymer composite properties.


Author(s):  
Sudip Ray ◽  
Siew Young Quek ◽  
Allan Easteal ◽  
Xiao Dong Chen

With today's advancement in nanotechnology, Polymer-Clay Nanocomposite has emerged as a novel food packaging material due to its several benefits such as enhanced mechanical, thermal and barrier properties. This article discusses the potential use of these polymer composites as novel food packaging materials with emphasis on preparation, characterization, properties, recent developments and future prospects.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1188
Author(s):  
Teresa Fernández-Menéndez ◽  
David García-López ◽  
Antonio Argüelles ◽  
Ana Fernández ◽  
Jaime Viña

New PET and nanosepiolite materials are produced for its application in innovative packaging with better performance. In our previous work, we demonstrate that the use of different percentages of sepiolite modified with different organosilanes improved mechanical and barrier properties of PET. Nanocomposites permeability can decrease up to 30% compared to that of pure PET and the mechanical analyses show that, although PET nanocomposites are more brittle than virgin PET, they are also harder. In the present work, we are going to study the properties of this innovative packaging with real food analyzing mechanical properties related to the product transport together with permeability and microbiological characteristics. At the same time, it has been seen that it is possible to lighten trays, which is very important both industrially and environmentally. On the other hand, a good quality packaging for food needs to ensure that organoleptic and physico-chemical characteristics of the product inside are not modified due to migration of any of the packaging material to the food itself. Results obtained in this work also show lower count of aerobic mesophilic bacteria and Enterobacteriaceae (EB), reducing the incidence of food contaminations by microorganisms.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 804 ◽  
Author(s):  
Arianna Pietrosanto ◽  
Paola Scarfato ◽  
Luciano Di Maio ◽  
Maria Rossella Nobile ◽  
Loredana Incarnato

The use of biopolymers can reduce the environmental impact generated by plastic materials. Among biopolymers, blends made of poly(lactide) (PLA) and poly(butylene-adipate-co-terephthalate) (PBAT) prove to have adequate performances for food packaging applications. Therefore, the present work deals with the production and the characterization of blown films based on PLA and PBAT blends in a wide range of compositions, in order to evaluate their suitability as chilled and frozen food packaging materials, thus extending their range of applications. The blends were fully characterized: they showed the typical two-phase structure, with a morphology varying from fibrillar to globular in accordance with their viscosity ratio. The increase of PBAT content in the blends led to a decrease of the barrier properties to oxygen and water vapor, and to an increase of the toughness of the films. The mechanical properties of the most ductile blends were also evaluated at 4 °C and −25 °C. The decrease in temperature caused an increase of the stiffness and a decrease of the ductility of the films to a different extent, depending upon the blend composition. The blend with 40% of PLA revealed to be a good candidate for chilled food packaging applications, while the blend with a PLA content of 20% revealed to be the best composition as frozen food packaging material.


2021 ◽  
Vol 2 (4) ◽  
pp. 744-758
Author(s):  
Morgan Malm ◽  
Andrea M. Liceaga ◽  
Fernanda San Martin-Gonzalez ◽  
Owen G. Jones ◽  
Jose M. Garcia-Bravo ◽  
...  

Edible insects have gained attention due to their impressive nutritional composition, as well as their efficient use of natural resources. However, a research gap remains on the applications of insect chitosan, especially as it relates to their potential use as food packaging material. Chitosan from two reared cricket species (Acheta domesticus and Gryllodes sigillatus) was evaluated for use as food packaging material. Cricket chitosan films (CCF) were structurally similar to commercial shrimp chitosan films (SCF) at controlled glycerol levels, as seen by shared spectral peaks in FT-IR analyses. Mechanical properties of CCF showed they had equal or greater tensile strength when compared to commercial SCF, although flexibility was lower. Scanning electron microscopy showed increased roughness of microstructure, likely increasing the tortuosity. As a result, CCF had improved water vapor permeability compared to commercial SCF. Melanin complexes present in cricket chitin and chitosan increased hydrophobicity and decreased light transmittance. This study also revealed that intrinsic species differences, which occur during insect and crustacean exoskeleton development, could have effects on the functionality of chitosan packaging materials. Overall, CCF were found to be as effective as commercial SCF, while providing additional advantages. CCF derived from reared crickets have good mechanical and barrier properties, and improved water resistance and light barrier characteristics. Edible cricket chitosan has the potential to be used as bio-based packaging material for food and pharmaceutical applications.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Nanou Peelman ◽  
Peter Ragaert ◽  
Elien Verguldt ◽  
Frank Devlieghere ◽  
Bruno De Meulenaer

AbstractThe research aim was to evaluate the applicability of biobased plastics for packing long shelf-life food products, both on laboratory and industrial scale. Therefore, the shelf-life (room temperature) of tortilla chips, dry biscuits and potato flakes packed under air or modified atmosphere (MAP) in xylan and cellulose-based packages was evaluated and compared with their shelf-life in reference (conventional) packaging materials. These tests were followed by packaging trials on industrial lines. Furthermore, overall migration studies and printability tests were performed. Most of the biobased packages showed sufficient barrier towards moisture and gasses to serve as a food packaging material and MAP packaging of long shelf-life food products is possible. But for very moisture-sensitive food products (e.g. dry biscuits), no suited packaging material was found. The quality of the tortilla chips and potato flakes could be guaranteed during their shelf-life, even if packaging materials with lower barrier properties were used. Still, brittleness and seal properties are critical for use on industrial scale (important for use on vertical flow packaging machines). Furthermore, the films were printable and migration tests showed compliance with legislation. This study shows promising results towards the industrial application of biobased packaging materials for long shelflife food products.


Sign in / Sign up

Export Citation Format

Share Document