DAMAGE REPORT WITH SMARTPHONES DURING EMILIA EARTHQUAKE, 2012

Author(s):  
V. Arcidiacono ◽  
G-P. Cimellaro
Keyword(s):  
2013 ◽  
Vol 13 (4) ◽  
pp. 935-947 ◽  
Author(s):  

Abstract. In this paper we present the geological effects induced by the 2012 Emilia seismic sequence in the Po Plain. Extensive liquefaction phenomena were observed over an area of ~ 1200 km2 following the 20 May, ML 5.9 and 29 May, ML 5.8 mainshocks; both occurred on about E–W trending, S dipping blind thrust faults. We collected the coseismic geological evidence through field and aerial surveys, reports from local people and Web-based survey. On the basis of their morphologic and structural characteristics, we grouped the 1362 effects surveyed into three main categories: liquefaction (485), fractures with liquefaction (768), and fractures (109). We show that the quite uneven distribution of liquefaction effects, which appear concentrated and aligned, is mostly controlled by the presence of paleo-riverbeds, out-flow channels and fans of the main rivers crossing the area; these terrains are characterised by the pervasive presence of sandy layers in the uppermost 5 m, a local feature that, along with the presence of a high water table, greatly favours liquefaction. We also find that the maximum distance of observed liquefaction from the earthquake epicentre is ~ 30 km, in agreement with the regional empirical relations available for the Italian Peninsula. Finally, we observe that the contour of the liquefaction observations has an elongated shape almost coinciding with the aftershock area, the InSAR deformation area, and the I ≥ 6 EMS area. This observation confirms the control of the earthquake source on the liquefaction distribution, and provides useful hints in the characterisation of the seismogenic source responsible for historical and pre-historical liquefactions.


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Francesca Bozzoni ◽  
Carlo Giovanni Lai ◽  
Laura Scandella

The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN) station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram) described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.<br />


2018 ◽  
Vol 763 ◽  
pp. 1121-1128
Author(s):  
Marco Mezzi ◽  
Gianluca Nestovito ◽  
Paolo Petrella ◽  
Vincenzo Cefaliello

The bridge in Poggio Renatico crossing the Reno river on the railway line between Bologna and Ferrara, consists of steel decks supported by masonry abutments and piers, while foundations and pier caps are made of reinforced concrete. After the 2012 Emilia Earthquake and accounting for the fluvial erosion below the piers foundations, a structural assessment of the bridge was carried out in accordance with to the current Italian rules. Although a sufficient structure capacity against the actual transit loads resulted, the bridge showed some inadequacies with respect to the load models provided by both the national standard for constructions and the guidelines of the Italian railway network company. The retrofitting project consists of an improvement of the structural capacity of all the elements: girders, piers and abutments. An innovative retrofitting solution provides for the strengthening of the existing decks through a suspension system of cables anchored to steel towers standing on both abutments and piers and creating a kind of suspended bridge. The retrofitting is compatible with the normal scheduled interruptions of the rail traffic thereby reducing the maintenance costs of the railway system. The structural solution represents a model easily replicable to solve analogous situations along the railway network.


Geofluids ◽  
2015 ◽  
Vol 16 (3) ◽  
pp. 452-463 ◽  
Author(s):  
M. Nespoli ◽  
M. Todesco ◽  
E. Serpelloni ◽  
M. E. Belardinelli ◽  
M. Bonafede ◽  
...  

2013 ◽  
Vol 12 (5) ◽  
pp. 2333-2365 ◽  
Author(s):  
Serena Cattari ◽  
Stefania Degli Abbati ◽  
Daniele Ferretti ◽  
Sergio Lagomarsino ◽  
Daria Ottonelli ◽  
...  

2014 ◽  
Vol 08 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Gian Paolo Cimellaro ◽  
Marco Chiriatti ◽  
Hwasung Roh ◽  
Andrei M. Reinhorn

On May 20, 2012 at 2:03 UTC, a Mw 6.1 earthquake occurred in Emilia Region of Northern Italy. The event was preceded by a Ml 4.1 foreshock on May 19, 2012 at 23:13 UTC, and followed by several aftershocks, twenty of them with a magnitude Mw greater than 4. The epicentral area of the seismic sequence covers alluvial lowland that is occupied by both agricultural and urbanized areas. Liquefaction effects were observed in several villages on the west side of Ferrara which were built upon former river beds such as the Reno River. The Emilia seismic sequence resulted in 27 casualties, several of whom were among the workers in the factories that collapsed during working hours, and there was extensive damage to monuments, public buildings, industrial sites and private homes. Almost no municipalities hit by 2012 earthquake were classified as seismic area before 2003; therefore, most of the existing structures had been designed without taking in account the seismic actions. The main aims of MCEER field mission was to document the emergency response and the most common damage mechanisms of industrial sheds during Emilia earthquake sequence which are shown and discussed in detail.


2014 ◽  
Vol 85 (3) ◽  
pp. 649-656 ◽  
Author(s):  
E. Benedetti ◽  
M. Branzanti ◽  
L. Biagi ◽  
G. Colosimo ◽  
A. Mazzoni ◽  
...  

2014 ◽  
Vol 30 (2) ◽  
pp. 891-912 ◽  
Author(s):  
Gennaro Magliulo ◽  
Marianna Ercolino ◽  
Crescenzo Petrone ◽  
Orsola Coppola ◽  
Gaetano Manfredi

On 20 and 29 May 2012, two earthquakes of MW5.9 and MW5.8 occurred in the Emilia region of northern Italy, one of the most developed industrial centers in the country. A complete photographic report collected in the epicentral zone shows the seismic vulnerability of precast structures, the damage to which is mainly caused by connection systems. Indeed, the main recorded damage is either the loss of support of structural horizontal elements, due to the failure of friction beam-to-column and roof-to-beam connections, or the collapse of the cladding panels, due to the failure of the panel-to-structure connections. The damage can be explained by the intensity of the recorded seismic event and by the exclusion of the epicentral region from the seismic areas recognized by the Italian building code up to 2003. Simple considerations related to the recorded acceleration spectra allow motivating the extensive damage due to the loss of support.


Sign in / Sign up

Export Citation Format

Share Document