Seismic Performance of Industrial Sheds and Liquefaction Effects During May 2012 Emilia Earthquakes Sequence in Northern Italy

2014 ◽  
Vol 08 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Gian Paolo Cimellaro ◽  
Marco Chiriatti ◽  
Hwasung Roh ◽  
Andrei M. Reinhorn

On May 20, 2012 at 2:03 UTC, a Mw 6.1 earthquake occurred in Emilia Region of Northern Italy. The event was preceded by a Ml 4.1 foreshock on May 19, 2012 at 23:13 UTC, and followed by several aftershocks, twenty of them with a magnitude Mw greater than 4. The epicentral area of the seismic sequence covers alluvial lowland that is occupied by both agricultural and urbanized areas. Liquefaction effects were observed in several villages on the west side of Ferrara which were built upon former river beds such as the Reno River. The Emilia seismic sequence resulted in 27 casualties, several of whom were among the workers in the factories that collapsed during working hours, and there was extensive damage to monuments, public buildings, industrial sites and private homes. Almost no municipalities hit by 2012 earthquake were classified as seismic area before 2003; therefore, most of the existing structures had been designed without taking in account the seismic actions. The main aims of MCEER field mission was to document the emergency response and the most common damage mechanisms of industrial sheds during Emilia earthquake sequence which are shown and discussed in detail.

2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Giuliana Alessio ◽  
Laura Alfonsi ◽  
Carlo Alberto Brunori ◽  
Pierfrancesco Burrato ◽  
Giuseppe Casula ◽  
...  

<p>On May 20, 2012, a Ml 5.9 seismic event hit the Emilia Po Plain, triggering intense earthquake activity along a broad area of the Po Plain across the provinces of Modena, Ferrara, Rovigo and Mantova (Figure 1). Nine days later, on May 29, 2012, a Ml 5.8 event occurred roughly 10 km to the SW of the first main shock. These events caused widespread damage and resulted in 26 victims. The aftershock area extended over more than 50 km and was elongated in the WNW-ESE direction, and it included five major aftershocks with 5.1 ≤Ml ≤5.3, and more than 2000 minor events (Figure 1). In general, the seismic sequence was confined to the upper 10 km of the crust. Minor seismicity with depths ranging from 10 km to 30 km extended towards the southern sector of the epicentral area (ISIDe, http://iside.rm.ingv.it/). […]</p><br />


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Lisa Borgatti ◽  
Antonio Edoardo Bracci ◽  
Stefano Cremonini ◽  
Giovanni Martinelli

<p>In 2012, a seismic sequence occurred in the lowlands of the Emilia-Romagna Region (northern Italy), between the borders of the Modena, Ferrara and Bologna Provinces. It consisted of seven mainshocks (5.9 &gt; Ml &gt; 5) that were recorded between May 20 and 29, 2012 [INGV 2012a] and 2,200 minor earthquakes [INGV 2012b]. An interferometric analysis [Bignami et al. 2012, Salvi et al. 2012, this volume] highlighted three main deformation areas, each of which was 12 km wide (from S to N) and 10 km to 20 km long in an ESE-WNW to E-W direction, thus affecting an area of about 600 km2 (Figure 1). Field and aerial geological surveys recorded numerous surficial effects, such as: (i) sediment liquefaction [Crespellani et al. 2012]; (ii) localized ground fissures resembling surficial faulting [Fioravante and Giretti 2012] (Figure 2); (iii) groundwater levels rising up to 400 cm above the local ground level in phreatic wells during the mainshocks (lower values were observed in confined aquifers); and (iv) dormancy of previously known sinkholes [Borgatti et al. 2010, Cremonini 2010a, and references therein]. Some of the observed surface phenomena were previously recorded as coseismic effects during the earthquakes of Ferrara (1570) and Argenta (1624) [Boschi et al. 1995, Galli 2000], together with the early rising of the water level of the Po River in the Stellata section. […]</p>


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Paola Bordoni ◽  
Riccardo M. Azzara ◽  
Fabrizio Cara ◽  
Rocco Cogliano ◽  
Giovanna Cultrera ◽  
...  

<p>On May 20, 2012, at 02:03 UTC, a Ml 5.9 reverse-fault earthquake occurred in the Emilia-Romagna region, northern Italy, at a hypocentral depth of 6.3 km (http://iside.rm.ingv.it/), close to the cities of Modena and Ferrara in the plain of the Po River. The epicenter was near the village of Finale Emilia where macroseismic intensity was assessed at 7 EMS98 [Tertulliani et al. 2012, this issue], while the closest accelerometric station, MRN, located less than 20 km west-ward at Mirandola (Figure 1) recorded peaks of ground accelerations of about 300 cm/s2 (www.protezionecivile.gov.it/resources/cms/documents/Report_DPC_1_Emilia_EQSd.pdf). The mainshock triggered liquefaction phenomena a few kilometers eastwards of the epicenter, around the village of San Carlo. On the same day, two other shocks of Ml 5.1 followed (02:07, 13:18 GMT; http://iside.rm.ingv.it/). On May 29, 2012, at 07:00 UTC another Ml 5.8 earthquake hit the region (http://iside.rm.ingv.it/), with the epicenter close to the village of Mirandola (Figure 1). Three other strong aftershocks occurred afterwards, of Ml 5.3 (May 29, at 10:55), Ml 5.2 (May 29, at 11:00) and Ml 5.1 (June 3, at 19:20). For a detailed description of the seismic sequence, see Moretti et al. [2012], Scognamiglio et al. [2012], and Massa et al. [2012], in this issue. The Emilia seismic sequence resulted in 25 casualties, several of whom were among the workers in the many factories that collapsed during working hours, and there was extensive damage to monuments, public buildings, industrial sites, and private homes. […]</p>


2009 ◽  
Vol 476 (1-2) ◽  
pp. 320-335 ◽  
Author(s):  
Franz A. Livio ◽  
Andrea Berlusconi ◽  
Alessandro M. Michetti ◽  
Giancanio Sileo ◽  
Andrea Zerboni ◽  
...  

2011 ◽  
Vol 26 (S1) ◽  
pp. s148-s149 ◽  
Author(s):  
K. Ruettger ◽  
W. Lenz

Due to the limited resources of specialized hospital departments, the allocation of patients to different hospitals according to severity is an extraordinarily complex and time-critical problem. The emergency capacity was determined for all medical centers (n = 135) in the State of Hessen, Germany, for patients of various triage categories (red, yellow, green) during normal working hours, and during weekends and nights and included logistic specifications of a potential helicopter landing. These data were entered into a state register. Using the data from the “acute-care-register”, a Ticket System was developed that allows operations management to assign patients according to the severity of their condition, urgency, and specialization requirements (e.g., neurosurgery, ophthalmology, pediatrics) to a hospital without exceeding the admission and/or treatment capacity of the hospital/facility. During a non-critical period, the order of allocations depending on the distance from the clinic is planned in advance so that no further modifications are necessary during the acute intervention phase of an emergency response. Additional notification of hospital capacities for severe casualties provided during the emergency response can be easily and immediately supplemented. Due to the relatively low frequency of such emergency responses, a cost-effective concept that is easily adaptable to the respective fields of application was decided upon. The system is a sticker set customized for the respective rescue teams. The sets will be carried permanently in the rescue equipment by the organization manager of the rescue service team. The equipment is not dependent on electronic components. The cost per sticker set is approximately US$50. Keeping track of the patient allocations is assured.


2016 ◽  
Vol 59 ◽  
Author(s):  
Marco Massa ◽  
Ezio D'Alema ◽  
Chiara Mascandola ◽  
Sara Lovati ◽  
Davide Scafidi ◽  
...  

<p><em>ISMD is the real time INGV Strong Motion database. During the recent August-September 2016 Amatrice, Mw 6.0, seismic sequence, ISMD represented the main tool for the INGV real time strong motion data sharing.  Starting from August 24<sup>th</sup>,  the main task of the web portal was to archive, process and distribute the strong-motion waveforms recorded  by the permanent and temporary INGV accelerometric stations, in the case of earthquakes with magnitude </em><em>≥</em><em> 3.0, occurring  in the Amatrice area and surroundings.  At present (i.e. September 30<sup>th</sup>, 2016), ISMD provides more than 21.000 strong motion waveforms freely available to all users. In particular, about 2.200 strong motion waveforms were recorded by the temporary network installed for emergency in the epicentral area by SISMIKO and EMERSITO working groups. Moreover, for each permanent and temporary recording site, the web portal provide a complete description of the necessary information to properly use the strong motion data.</em></p>


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Silvia Pondrelli ◽  
Simone Salimbeni ◽  
Paolo Perfetti ◽  
Peter Danecek

<p>In May 2012, a seismic sequence struck the Emilia region (northern Italy). The mainshock, of Ml 5.9, occurred on May 20, 2012, at 02:03 UTC. This was preceded by a smaller Ml 4.1 foreshock some hours before (23:13 UTC on May 19, 2012) and followed by more than 2,500 earthquakes in the magnitude range from Ml 0.7 to 5.2. In addition, on May 29, 2012, three further strong earthquakes occurred, all with magnitude Ml ≥5.2: a Ml 5.8 earthquake in the morning (07:00 UTC), followed by two events within just 5 min of each other, one at 10:55 UTC (Ml 5.3) and the second at 11:00 UTC (Ml 5.2). For all of the Ml ≥4.0 earthquakes in Italy and for all of the Ml ≥4.5 in the Mediterranean area, an automatic procedure for the computation of a regional centroid moment tensor (RCMT) is triggered by an email alert. Within 1 h of the event, a manually revised quick RCMT (QRCMT) can be published on the website if the solution is considered stable. In particular, for the Emilia seismic sequence, 13 QRCMTs were determined and for three of them, those with M &gt;5.5, the automatically computed QRCMTs fitted the criteria for publication without manual revision. Using this seismic sequence as a test, we can then identify the magnitude threshold for automatic publication of our QRCMTs.</p>


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Alessandra Sciarra ◽  
Barbara Cantucci ◽  
Mauro Buttinelli ◽  
Gianfranco Galli ◽  
Manuela Nazzari ◽  
...  

<p>The epicentral area of the Emilia seismic sequence is located in the Emilia-Romagna Region (northern Italy), 45 km from the city of Modena (Figure 1). This area is sited within thrust-related folds of the Ferrara Arc, which represent the most external part of the northern Apennines. This sector is considered as having been active during late Pliocene to early Pleistocene times [Scrocca et al. 2007] and encompasses also the Mirandola and Ferrara seismogenic sources [e.g., Burrato et al. 2003, Boccaletti et al. 2004, Basili et al. 2008]. The main sedimentary infilling of the Po Plain is represented by Pliocene–Pleistocene alluvial deposits (alternating fluvial sands and clays) that overlie a foredeep clastic sequence, with a total average thickness of 2 km to 4 km [e.g., Carminati et al. 2010]. Soon after the mainshock, several liquefaction phenomena coupled to ground fractures were observed in the epicentral area (e.g., San Carlo, Ferrara). Soil liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid loading. […] Collapsed caves reported in the literature and/or local press [e.g., Febo 1999, Martelli 2002] in the epicentral area were previously investigated by our research group in 2008, with several soil measurements of CO2 and CH4 fluxes. Immediately after the May 20, 2012, mainshock and during the Emilia seismic sequence, the collapsed caves were sampled again to determine any variations in these CO2 and CH4 fluxes. In this survey, newly formed collapsed caves were also found and measured (especially in the northern part of investigated area). […]</p>


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 931-949 ◽  
Author(s):  
Peter Klin ◽  
Giovanna Laurenzano ◽  
Maria Adelaide Romano ◽  
Enrico Priolo ◽  
Luca Martelli

Abstract. During the 2012 seismic sequence of the Emilia region (northern Italy), the earthquake ground motion in the epicentral area featured longer duration and higher velocity than those estimated by empirical-based prediction equations typically adopted in Italy. In order to explain these anomalies, we (1) build up a structural and geophysical 3-D digital model of the crustal sector involved in the sequence, (2) reproduce the earthquake ground motion at some seismological stations through physics-based numerical simulations and (3) compare the observed recordings with the simulated ones. In this way, we investigate how the earthquake ground motion in the epicentral area is influenced by local stratigraphy and geological structure buried under the Po Plain alluvium. Our study area covers approximately 5000 km2 and extends from the right Po River bank to the Northern Apennine morphological margin in the N–S direction, and between the two chief towns of Reggio Emilia and Ferrara in the W–E direction, involving a crustal volume of 20 km thickness. We set up the 3-D model by using already-published geological and geophysical data, with details corresponding to a map at scale of 1:250 000. The model depicts the stratigraphic and tectonic relationships of the main geological formations, the known faults and the spatial pattern of the seismic properties. Being a digital vector structure, the 3-D model can be easily modified or refined locally for future improvements or applications. We exploit high-performance computing to perform numerical simulations of the seismic wave propagation in the frequency range up to 2 Hz. In order to get rid of the finite source effects and validate the model response, we choose to reproduce the ground motion related to two moderate-size aftershocks of the 2012 Emilia sequence that were recorded by a large number of stations. The obtained solutions compare very well to the recordings available at about 30 stations in terms of peak ground velocity and signal duration. Snapshots of the simulated wavefield allow us to attribute the exceptional length of the observed ground motion to surface wave overtones that are excited in the alluvial basin by the buried ridge of the Mirandola anticline. Physics-based simulations using realistic 3-D geomodels show eventually to be effective for assessing the local seismic response and the seismic hazard in geologically complex areas.


Sign in / Sign up

Export Citation Format

Share Document