scholarly journals A deep learning-based ensemble method for helmet-wearing detection

2020 ◽  
Vol 6 ◽  
pp. e311
Author(s):  
Zheming Fan ◽  
Chengbin Peng ◽  
Licun Dai ◽  
Feng Cao ◽  
Jianyu Qi ◽  
...  

Recently, object detection methods have developed rapidly and have been widely used in many areas. In many scenarios, helmet wearing detection is very useful, because people are required to wear helmets to protect their safety when they work in construction sites or cycle in the streets. However, for the problem of helmet wearing detection in complex scenes such as construction sites and workshops, the detection accuracy of current approaches still needs to be improved. In this work, we analyze the mechanism and performance of several detection algorithms and identify two feasible base algorithms that have complementary advantages. We use one base algorithm to detect relatively large heads and helmets. Also, we use the other base algorithm to detect relatively small heads, and we add another convolutional neural network to detect whether there is a helmet above each head. Then, we integrate these two base algorithms with an ensemble method. In this method, we first propose an approach to merge information of heads and helmets from the base algorithms, and then propose a linear function to estimate the confidence score of the identified heads and helmets. Experiments on a benchmark data set show that, our approach increases the precision and recall for base algorithms, and the mean Average Precision of our approach is 0.93, which is better than many other approaches. With GPU acceleration, our approach can achieve real-time processing on contemporary computers, which is useful in practice.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1285
Author(s):  
Mohammed Al-Sarem ◽  
Faisal Saeed ◽  
Zeyad Ghaleb Al-Mekhlafi ◽  
Badiea Abdulkarem Mohammed ◽  
Tawfik Al-Hadhrami ◽  
...  

Security attacks on legitimate websites to steal users’ information, known as phishing attacks, have been increasing. This kind of attack does not just affect individuals’ or organisations’ websites. Although several detection methods for phishing websites have been proposed using machine learning, deep learning, and other approaches, their detection accuracy still needs to be enhanced. This paper proposes an optimized stacking ensemble method for phishing website detection. The optimisation was carried out using a genetic algorithm (GA) to tune the parameters of several ensemble machine learning methods, including random forests, AdaBoost, XGBoost, Bagging, GradientBoost, and LightGBM. The optimized classifiers were then ranked, and the best three models were chosen as base classifiers of a stacking ensemble method. The experiments were conducted on three phishing website datasets that consisted of both phishing websites and legitimate websites—the Phishing Websites Data Set from UCI (Dataset 1); Phishing Dataset for Machine Learning from Mendeley (Dataset 2, and Datasets for Phishing Websites Detection from Mendeley (Dataset 3). The experimental results showed an improvement using the optimized stacking ensemble method, where the detection accuracy reached 97.16%, 98.58%, and 97.39% for Dataset 1, Dataset 2, and Dataset 3, respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jiang Wu ◽  
Yanju Ji ◽  
Ling Zhao ◽  
Mengying Ji ◽  
Zhuang Ye ◽  
...  

Background. Surfaced-enhanced laser desorption-ionization-time of flight mass spectrometry (SELDI-TOF-MS) technology plays an important role in the early diagnosis of ovarian cancer. However, the raw MS data is highly dimensional and redundant. Therefore, it is necessary to study rapid and accurate detection methods from the massive MS data.Methods. The clinical data set used in the experiments for early cancer detection consisted of 216 SELDI-TOF-MS samples. An MS analysis method based on probabilistic principal components analysis (PPCA) and support vector machine (SVM) was proposed and applied to the ovarian cancer early classification in the data set. Additionally, by the same data set, we also established a traditional PCA-SVM model. Finally we compared the two models in detection accuracy, specificity, and sensitivity.Results. Using independent training and testing experiments 10 times to evaluate the ovarian cancer detection models, the average prediction accuracy, sensitivity, and specificity of the PCA-SVM model were 83.34%, 82.70%, and 83.88%, respectively. In contrast, those of the PPCA-SVM model were 90.80%, 92.98%, and 88.97%, respectively.Conclusions. The PPCA-SVM model had better detection performance. And the model combined with the SELDI-TOF-MS technology had a prospect in early clinical detection and diagnosis of ovarian cancer.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Zhimin Lin ◽  
Ying Zeng ◽  
Hui Gao ◽  
Li Tong ◽  
Chi Zhang ◽  
...  

Target image detection based on a rapid serial visual presentation (RSVP) paradigm is a typical brain-computer interface system with various applications, such as image retrieval. In an RSVP paradigm, a P300 component is detected to determine target images. This strategy requires high-precision single-trial P300 detection methods. However, the performance of single-trial detection methods is relatively lower than that of multitrial P300 detection methods. Image retrieval based on multitrial P300 is a new research direction. In this paper, we propose a triple-RSVP paradigm with three images being presented simultaneously and a target image appearing three times. Thus, multitrial P300 classification methods can be used to improve detection accuracy. In this study, these mechanisms were extended and validated, and the characteristics of the multi-RSVP framework were further explored. Two different P300 detection algorithms were also utilized in multi-RSVP to demonstrate that the scheme is universally applicable. Results revealed that the detection accuracy of the multi-RSVP paradigm was higher than that of the standard RSVP paradigm. The results validate the effectiveness of the proposed method, and this method can provide a whole new idea in the field of EEG-based target detection.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3768 ◽  
Author(s):  
Kong ◽  
Chen ◽  
Wang ◽  
Chen ◽  
Meng ◽  
...  

Vision-based fall-detection methods have been previously studied but many have limitations in terms of practicality. Due to differences in rooms, users do not set the camera or sensors at the same height. However, few studies have taken this into consideration. Moreover, some fall-detection methods are lacking in terms of practicality because only standing, sitting and falling are taken into account. Hence, this study constructs a data set consisting of various daily activities and fall events and studies the effect of camera/sensor height on fall-detection accuracy. Each activity in the data set is carried out by eight participants in eight directions and taken with the depth camera at five different heights. Many related studies heavily depended on human segmentation by using Kinect SDK but this is not reliable enough. To address this issue, this study proposes Enhanced Tracking and Denoising Alex-Net (ETDA-Net) to improve tracking and denoising performance and classify fall and non-fall events. Experimental results indicate that fall-detection accuracy is affected by camera height, against which ETDA-Net is robust, outperforming traditional deep learning based fall-detection methods.


Author(s):  
Taiming Zhu ◽  
Yuanbo Guo ◽  
Ankang Ju ◽  
Jun Ma ◽  
Xuan Wang

Current intrusion detection systems are mostly for detecting external attacks, but the “Prism Door” and other similar events indicate that internal staff may bring greater harm to organizations in information security. Traditional insider threat detection methods only consider the audit records of personal behavior and failed to combine it with business activities, which may miss the insider threat happened during a business process. The authors consider operators' behavior and correctness and performance of the business activities, propose a business process mining based insider threat detection system. The system firstly establishes the normal profiles of business activities and the operators by mining the business log, and then detects specific anomalies by comparing the content of real-time log with the corresponding normal profile in order to find out the insiders and the threats they have brought. The relating anomalies are defined and the corresponding detection algorithms are presented. The authors have performed experimentation using the ProM framework and Java programming, with five synthetic business cases, and found that the system can effectively identify anomalies of both operators and business activities that may be indicative of potential insider threat.


2014 ◽  
Vol 631-632 ◽  
pp. 631-635
Author(s):  
Yi Ting Wang ◽  
Shi Qi Huang ◽  
Hong Xia Wang ◽  
Dai Zhi Liu

Hyperspectral remote sensing technology can be used to make a correct spectral diagnosis on substances. So it is widely used in the field of target detection and recognition. However, it is very difficult to gather accurate prior information for target detect since the spectral uncertainty of objects is pervasive in existence. An anomaly detector can enable one to detect targets whose signatures are spectrally distinct from their surroundings with no prior knowledge. It becomes a focus in the field of target detection. Therefore, we study four anomaly detection algorithms and conclude with empirical results that use hyperspectral imaging data to illustrate the operation and performance of various detectors.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fei Yan ◽  
Hui Zhang ◽  
Tianyang Zhou ◽  
Zhiyong Fan ◽  
Jia Liu

Whether in intelligent transportation or autonomous driving, vehicle detection is an important part. Vehicle detection still faces many problems, such as inaccurate vehicle detection positioning and low detection accuracy in complex scenes. FCOS as a representative of anchor-free detection algorithms was once a sensation, but now it seems to be slightly insufficient. Based on this situation, we propose an improved FCOS algorithm. The improvements are as follows: (1) we introduce a deformable convolution into the backbone to solve the problem that the receptive field cannot cover the overall goal; (2) we add a bottom-up information path after the FPN of the neck module to reduce the loss of information in the propagation process; (3) we introduce the balance module according to the balance principle, which reduces inconsistent detection of the bbox head caused by the mismatch of variance of different feature maps. To enhance the comparative experiment, we have extracted some of the most recent datasets from UA-DETRAC, COCO, and Pascal VOC. The experimental results show that our method has achieved good results on its dataset.


2021 ◽  
Vol 11 (2) ◽  
pp. 576
Author(s):  
Kaihua Zhang ◽  
Haikuo Shen

The miniaturization and high integration of electronic products have higher and higher requirements for welding of internal components of electronic products. A welding quality detection method has always been one of the important research contents in the industry, among which, the research on solder joint defect detection of a connector has gradually attracted people’s attention with the development of image detection algorithm. The traditional solder joint detection method of connector adopts manual detection or automatic detection methods, which is inefficient and not safe enough. With the development of deep learning, the application of a deep convolutional neural network to target detection has become a research hotspot. In this paper, a data set of connector solder joint samples was made and the number of image samples was expanded to more than 3 times of the original by using data augmentation. Clustering generates anchor boxes and transfer learning with ResNet-101 were fused, so an improved faster region-based convolutional neural networks (Faster RCNN) algorithm was proposed. The experiment verified that the improved algorithm proposed in this paper had a great improvement in all aspects compared with the original algorithm. The average detection accuracy of this method can reach 94%, and the detection rate of some defects can even reach 100%, which can completely meet the industrial requirements.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7279
Author(s):  
Yao Wang ◽  
Peizhi Yu

The efficiency and the effectiveness of railway intrusion detection are crucial to the safety of railway transportation. Most current methods of railway intrusion detection or obstacle detection are inappropriate for large-scale applications due to their high cost or limited coverage. In this study, we present a fast and low-cost solution to intrusion detection of high-speed railways. As the solution to heavy computational burdens in the current convolutional-neural-network-based detection methods, the proposed method is mainly a novel neural network based on the SSD framework, which includes a feature extractor using an improved MobileNet and a lightweight and efficient feature fusion module. In addition, aiming to improve the detection accuracy of small objects, the feature map weights are introduced through convolution operation to fuse features at different scales. TensorRT is employed to optimize and deploy the proposed network in the low-cost embedded GPU platform, NVIDIA Jetson TX2, to enhance the efficiency. The experimental results show that the proposed methods achieved 89% mAP on the railway intrusion detection dataset, and the average processing time for a single frame was 38.6 ms on the Jetson TX2 module, which satisfies the need of real-time processing.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chang Liu ◽  
Samad M.E. Sepasgozar ◽  
Sara Shirowzhan ◽  
Gelareh Mohammadi

Purpose The practice of artificial intelligence (AI) is increasingly being promoted by technology developers. However, its adoption rate is still reported as low in the construction industry due to a lack of expertise and the limited reliable applications for AI technology. Hence, this paper aims to present the detailed outcome of experimentations evaluating the applicability and the performance of AI object detection algorithms for construction modular object detection. Design/methodology/approach This paper provides a thorough evaluation of two deep learning algorithms for object detection, including the faster region-based convolutional neural network (faster RCNN) and single shot multi-box detector (SSD). Two types of metrics are also presented; first, the average recall and mean average precision by image pixels; second, the recall and precision by counting. To conduct the experiments using the selected algorithms, four infrastructure and building construction sites are chosen to collect the required data, including a total of 990 images of three different but common modular objects, including modular panels, safety barricades and site fences. Findings The results of the comprehensive evaluation of the algorithms show that the performance of faster RCNN and SSD depends on the context that detection occurs. Indeed, surrounding objects and the backgrounds of the objects affect the level of accuracy obtained from the AI analysis and may particularly effect precision and recall. The analysis of loss lines shows that the loss lines for selected objects depend on both their geometry and the image background. The results on selected objects show that faster RCNN offers higher accuracy than SSD for detection of selected objects. Research limitations/implications The results show that modular object detection is crucial in construction for the achievement of the required information for project quality and safety objectives. The detection process can significantly improve monitoring object installation progress in an accurate and machine-based manner avoiding human errors. The results of this paper are limited to three construction sites, but future investigations can cover more tasks or objects from different construction sites in a fully automated manner. Originality/value This paper’s originality lies in offering new AI applications in modular construction, using a large first-hand data set collected from three construction sites. Furthermore, the paper presents the scientific evaluation results of implementing recent object detection algorithms across a set of extended metrics using the original training and validation data sets to improve the generalisability of the experimentation. This paper also provides the practitioners and scholars with a workflow on AI applications in the modular context and the first-hand referencing data.


Sign in / Sign up

Export Citation Format

Share Document