scholarly journals Full depth CNN classifier for handwritten and license plate characters recognition

2021 ◽  
Vol 7 ◽  
pp. e576
Author(s):  
Mohammed Salemdeeb ◽  
Sarp Ertürk

Character recognition is an important research field of interest for many applications. In recent years, deep learning has made breakthroughs in image classification, especially for character recognition. However, convolutional neural networks (CNN) still deliver state-of-the-art results in this area. Motivated by the success of CNNs, this paper proposes a simple novel full depth stacked CNN architecture for Latin and Arabic handwritten alphanumeric characters that is also utilized for license plate (LP) characters recognition. The proposed architecture is constructed by four convolutional layers, two max-pooling layers, and one fully connected layer. This architecture is low-complex, fast, reliable and achieves very promising classification accuracy that may move the field forward in terms of low complexity, high accuracy and full feature extraction. The proposed approach is tested on four benchmarks for handwritten character datasets, Fashion-MNIST dataset, public LP character datasets and a newly introduced real LP isolated character dataset. The proposed approach tests report an error of only 0.28% for MNIST, 0.34% for MAHDB, 1.45% for AHCD, 3.81% for AIA9K, 5.00% for Fashion-MNIST, 0.26% for Saudi license plate character and 0.97% for Latin license plate characters datasets. The license plate characters include license plates from Turkey (TR), Europe (EU), USA, United Arab Emirates (UAE) and Kingdom of Saudi Arabia (KSA).

Author(s):  
Jianzong Wang ◽  
Xinhui Liu ◽  
Aozhi Liu ◽  
Jing Xiao

AbstractVehicle license platerecognition in natural scene is an important research topic in computer vision. The license plate recognition approach in the specific scene has become a relatively mature technology. However, license plate recognition in the natural scene is still a challenge since the image parameters are highly affected by the complicated environment. For the purpose of improving the performance of license plate recognition in natural scene, we proposed a solution to recognize real-world Chinese license plate photographs using the DCNN-RNN model. With the implementation of DCNN, the license plate is located and the features of the license plate are extracted after the correction process. Finally, an RNN model is performed to decode the deep features to characters without character segmentation. Our state-of-the-art system results in the accuracy and recall of 92.32 and 91.89% on the car accident scene dataset collected in the natural scene, and 92.88 and 92.09% on Caltech Cars 1999 dataset.


Author(s):  
Haifa Alyahya ◽  
Mohamed Maher Ben Ismail ◽  
AbdulMalik Al-Salman

In recent years, handwritten character recognition has become an active research field. In particular, digitalization has triggered the interest of researchers from various computing disciplines to address several handwriting related challenges. Despite these efforts, there are still opportunities for the development and improvement of the recognition of the handwritten Arabic letters. In this paper, we designed and developed a deep ensemble architecture in which ResNet-18 architecture is exploited to model and classify character images. Specifically, we adapted ResNet-18 by adding a dropout layer after all convolutional layer and integrated it in multiple ensemble models to automatically recognize isolated handwritten Arabic characters. A standard Arabic Handwritten Character Dataset (AHCD) was used in the experiments to train and assess all the proposed models. Satisfactory results were obtained using all models. The best-attained accuracy was 98.30% using a typical ResNet-18 model. Similarly, 98.00% and 98.03% accuracies were obtained using an ensemble model with one fully connected layer (1 FC) and an ensemble with two fully connected layers (2 FC) coupled with a dropout layer, respectively.


Author(s):  
Jainal Uddin ◽  
Md Mahbubur Rahman ◽  
Mohammad Rakib ◽  
Md Jannatul Ferdous ◽  
Shariar Kabir ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
pp. 78-81
Author(s):  
Simone Zini ◽  
Simone Bianco ◽  
Raimondo Schettini

Rain removal from pictures taken under bad weather conditions is a challenging task that aims to improve the overall quality and visibility of a scene. The enhanced images usually constitute the input for subsequent Computer Vision tasks such as detection and classification. In this paper, we present a Convolutional Neural Network, based on the Pix2Pix model, for rain streaks removal from images, with specific interest in evaluating the results of the processing operation with respect to the Optical Character Recognition (OCR) task. In particular, we present a way to generate a rainy version of the Street View Text Dataset (R-SVTD) for "text detection and recognition" evaluation in bad weather conditions. Experimental results on this dataset show that our model is able to outperform the state of the art in terms of two commonly used image quality metrics, and that it is capable to improve the performances of an OCR model to detect and recognise text in the wild.


2019 ◽  
Vol 15 (3) ◽  
pp. 216-230 ◽  
Author(s):  
Abbasali Emamjomeh ◽  
Javad Zahiri ◽  
Mehrdad Asadian ◽  
Mehrdad Behmanesh ◽  
Barat A. Fakheri ◽  
...  

Background:Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs.Objective:The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA’s roles in cellular processes and drugs design, briefly.Method:In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases.Results:The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs.Conclusion:ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.


2018 ◽  
Vol 7 (4) ◽  
pp. 603-622 ◽  
Author(s):  
Leonardo Gutiérrez-Gómez ◽  
Jean-Charles Delvenne

Abstract Several social, medical, engineering and biological challenges rely on discovering the functionality of networks from their structure and node metadata, when it is available. For example, in chemoinformatics one might want to detect whether a molecule is toxic based on structure and atomic types, or discover the research field of a scientific collaboration network. Existing techniques rely on counting or measuring structural patterns that are known to show large variations from network to network, such as the number of triangles, or the assortativity of node metadata. We introduce the concept of multi-hop assortativity, that captures the similarity of the nodes situated at the extremities of a randomly selected path of a given length. We show that multi-hop assortativity unifies various existing concepts and offers a versatile family of ‘fingerprints’ to characterize networks. These fingerprints allow in turn to recover the functionalities of a network, with the help of the machine learning toolbox. Our method is evaluated empirically on established social and chemoinformatic network benchmarks. Results reveal that our assortativity based features are competitive providing highly accurate results often outperforming state of the art methods for the network classification task.


2021 ◽  
Vol 11 (4) ◽  
pp. 1728
Author(s):  
Hua Zhong ◽  
Li Xu

The prediction interval (PI) is an important research topic in reliability analyses and decision support systems. Data size and computation costs are two of the issues which may hamper the construction of PIs. This paper proposes an all-batch (AB) loss function for constructing high quality PIs. Taking the full advantage of the likelihood principle, the proposed loss makes it possible to train PI generation models using the gradient descent (GD) method for both small and large batches of samples. With the structure of dual feedforward neural networks (FNNs), a high-quality PI generation framework is introduced, which can be adapted to a variety of problems including regression analysis. Numerical experiments were conducted on the benchmark datasets; the results show that higher-quality PIs were achieved using the proposed scheme. Its reliability and stability were also verified in comparison with various state-of-the-art PI construction methods.


2013 ◽  
Vol 760-762 ◽  
pp. 1638-1641 ◽  
Author(s):  
Chun Yu Chen ◽  
Bao Zhi Cheng ◽  
Xin Chen ◽  
Fu Cheng Wang ◽  
Chen Zhang

At present, the traffic engineering and automation have developed, and the vehicle license plate recognition technology need get a corresponding improvement also. In case of identifying a car license picture, the principle of automatic license plate recognition is illustrated in this paper, and the processing is described in detail which includes the pre-processing, the edge extraction, the license plate location, the character segmentation, the character recognition. The program implementing recognition is edited by Matlab. The example result shows that the recognition method is feasible, and it can be put into practice.


2013 ◽  
Vol 760-762 ◽  
pp. 1452-1456
Author(s):  
Chao Zheng ◽  
Hua Yang ◽  
Xing Yang ◽  
Chao Chao Huang ◽  
Xiao Di Wu

Low-resolution Chinese character recognition of license plate is always a difficult problem. For solving it, we must think about the distinctiveness of character feature and the counting speed of method simultaneously. In this paper, we proposed a simple and effective feature extraction algorithm. First, extract the statistical feature of Chinese character based on decomposing stroke with wavelet transform. Second, apply Elastic Mesh Algorithm into extracting wavelet coefficient of decomposing stroke to get the structure information of Chinese character. The experimental results show the method is robust against low quality Chinese characters, such as skew, fuzzy, glue, distorted character, and easy to be used in actual projects with simple advantage.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 555
Author(s):  
Jui-Sheng Chou ◽  
Chia-Hsuan Liu

Sand theft or illegal mining in river dredging areas has been a problem in recent decades. For this reason, increasing the use of artificial intelligence in dredging areas, building automated monitoring systems, and reducing human involvement can effectively deter crime and lighten the workload of security guards. In this investigation, a smart dredging construction site system was developed using automated techniques that were arranged to be suitable to various areas. The aim in the initial period of the smart dredging construction was to automate the audit work at the control point, which manages trucks in river dredging areas. Images of dump trucks entering the control point were captured using monitoring equipment in the construction area. The obtained images and the deep learning technique, YOLOv3, were used to detect the positions of the vehicle license plates. Framed images of the vehicle license plates were captured and were used as input in an image classification model, C-CNN-L3, to identify the number of characters on the license plate. Based on the classification results, the images of the vehicle license plates were transmitted to a text recognition model, R-CNN-L3, that corresponded to the characters of the license plate. Finally, the models of each stage were integrated into a real-time truck license plate recognition (TLPR) system; the single character recognition rate was 97.59%, the overall recognition rate was 93.73%, and the speed was 0.3271 s/image. The TLPR system reduces the labor force and time spent to identify the license plates, effectively reducing the probability of crime and increasing the transparency, automation, and efficiency of the frontline personnel’s work. The TLPR is the first step toward an automated operation to manage trucks at the control point. The subsequent and ongoing development of system functions can advance dredging operations toward the goal of being a smart construction site. By intending to facilitate an intelligent and highly efficient management system of dredging-related departments by providing a vehicle LPR system, this paper forms a contribution to the current body of knowledge in the sense that it presents an objective approach for the TLPR system.


Sign in / Sign up

Export Citation Format

Share Document