scholarly journals Whole-body kinematic and dynamic modeling for quadruped robot under different gaits and mechanism topologies

2021 ◽  
Vol 7 ◽  
pp. e821
Author(s):  
Wei Yan ◽  
Yang Pan ◽  
Junjie Che ◽  
Jiexian Yu ◽  
Zhuchen Han

Dynamic locomotion plays a crucial role for legged robots to fulfill tasks in unstructured environments. This paper proposes whole-body kinematic and dynamic modeling method s based on screw theory for a quadruped robot using different gaits and mechanism topologies. Unlike simplified models such as centroid or inverse pendulum models, the methods proposed here can handle 10-dimensional mass and inertia for each part. The only simplification is that foot contact models are treated as spherical joints. Models of three different mechanism topologies are formulated: (1) Standing phase: a system consisting of one end-effector, the body, and four limbs, the legs; (2) Walking phase: a system consisting of one or two lifting legs (depending on the chosen gait), two or three supporting legs; (3) Floating phase: a system in which all legs detach from the ground. Control strategies based on our models are also introduced, which includes walk and trot gait plans. In our control system, two additional types of information are provided: (1) contacting forces are given by force sensors installed under feet; (2) body poses are determined by an inertial measurement unit (IMU). Combined with the sensor data and calibrated mass, inertia, and friction, the joint torque can be estimated accurately in simulation and experiment. Our prototype, the “XiLing” robot, is built to verify the methods proposed in this paper, and the results show that the models can be solved quickly and leads to steady locomotions.

2021 ◽  
Author(s):  
Mehdi Ejtehadi ◽  
Amin M. Nasrabadi ◽  
Saeed Behzadipour

Abstract Background: The advent of Inertial measurement unit (IMU) sensors has significantly extended the application domain of Human Activity Recognition (HAR) systems to healthcare, tele-rehabilitation & daily life monitoring. IMU’s are categorized as body-worn sensors and therefore their output signals and the HAR performance naturally depends on their exact location on the body segments. Objectives: This research aims to introduce a methodology to investigate the effects of misplacing the sensors on the performance of the HAR systems. Methods: The properly placed sensors and their misplaced variations were modeled on a human body kinematic model. The model was then actuated using measured motions from human subjects. The model was then used to run a sensitivity analysis. Results: The results indicated that the transverse misplacement of the sensors on the left arm and right thigh and the rotation of the left thigh sensor significantly decrease the rate of activity recognition. It was also shown that the longitudinal displacements of the sensors (along the body segments) have minor impacts on the HAR performance. A Monte Carlo simulation indicated that if the sensitive sensors are mounted with extra care, the performance can be maintained at a higher than 95% level.Conclusions: Accurate mounting of the IMU’s on the body impacts the performance of the HAR. Particularly, the transverse position and rotation of the IMU’s are more sensitive. The users of such systems need to be informed about the more sensitive sensors and directions to maintain an acceptable performance for the HAR.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1189
Author(s):  
Ru Kang ◽  
Fei Meng ◽  
Lei Wang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
...  

The jumping motion of legged robots is an effective way to overcome obstacles in the rugged microgravity planetary exploration environment. At the same time, a quadruped robot with a manipulator can achieve operational tasks during movement, which is more practical. However, the additional manipulator will restrict the jumping ability of the quadruped robot due to the increase in the weight of the system, and more active degrees of freedom will increase the control complexity. To improve the jumping height of a quadruped robot with a manipulator, a bio-inspired take-off maneuver based on the coordination of upper and lower limbs is proposed in this paper. The kinetic energy and potential energy of the system are increased by driving the manipulator-end (ME) to swing upward, and the torso driven by the legs will delay reaching the required peak speed due to the additional load caused by the accelerated ME. When the acceleration of ME is less than zero, it will pull the body upward, which reduces the peak power of the leg joints. Therefore, the jumping ability of the system is improved. To realize continuous and stable jumping, a control framework based on whole-body control was established, in which the quadruped robot with a manipulator was a simplified floating seven-link model, and the hierarchical optimization was used to solve the target joint torques. This method greatly simplifies the dynamic model and is convenient for calculation. Finally, the jumping simulations in different gravity environments and a 15° slope were performed. The jump heights have all been improved after adding the arm swing, which verified the superiority of the bio-inspired take-off maneuver proposed in this paper. Furthermore, the stability of the jumping control method was testified by the continuous and stable jumping.


2016 ◽  
Vol 28 (5) ◽  
pp. 950-969 ◽  
Author(s):  
Naoki Kudo ◽  
Kyuheong Choi ◽  
Takahiro Kagawa ◽  
Yoji Uno

It is well known that planar reaching movements of the human shoulder and elbow joints have invariant features: roughly straight hand paths and bell-shaped velocity profiles. The optimal control models with the criteria of smoothness or precision, which determine a unique movement pattern, predict such features of hand trajectories. In this letter on expanding the research on simple arm reaching movements, we examine whether the smoothness criteria can be applied to whole-body reaching movements with many degrees of freedom. Determining a suitable joint trajectory in the whole-body reaching movement corresponds to the optimization problem with constraints, since body balance must be maintained during a motion task. First, we measured human joint trajectories and ground reaction forces during whole-body reaching movements, and confirmed that subjects formed similar movements with common characteristics in the trajectories of the hand position and body center of mass. Second, we calculated the optimal trajectories according to the criteria of torque and muscle-tension smoothness. While the minimum torque change trajectories were not consistent with the experimental data, the minimum muscle-tension change model was able to predict the stereotyped features of the measured trajectories. To explore the dominant effects of the extension from the torque change to the muscle-tension change, we introduced a weighted torque change cost function. Considering the maximum voluntary contraction (MVC) force of the muscle as the weighting factor of each joint torque, we formulated the weighted torque change cost as a simplified version of the minimum muscle-tension change cost. The trajectories owing to the minimum weighted torque change criterion also showed qualitative agreement with the common features of the measured data. Proper estimation of the MVC forces in the body joints is essential to reproduce human whole-body movements according to the minimum muscle-tension change criterion.


2005 ◽  
Vol 02 (04) ◽  
pp. 505-518 ◽  
Author(s):  
LUIS SENTIS ◽  
OUSSAMA KHATIB

To synthesize whole-body behaviors interactively, multiple behavioral primitives need to be simultaneously controlled, including those that guarantee that the constraints imposed by the robot's structure and the external environment are satisfied. Behavioral primitives are entities for the control of various movement criteria, e.g. primitives describing the behavior of the center of gravity, the behaviors of the hands, legs, and head, the body attitude and posture, the constrained body parts such as joint-limits and contacts, etc. By aggregating multiple primitives, we synthesize whole-body behaviors. For safety and for efficient control, we establish a control hierarchy among behavioral primitives, which is exploited to establish control priorities among the different control categories, i.e. constraints, operational tasks, and postures. Constraints should always be guaranteed, while operational tasks should be accomplished without violating the acting constraints, and the posture should control the residual movement redundancy. In this paper, we will present a multi-level hierarchical control structure that allows the establishment of general priorities among behavioral primitives, and we will describe compliant control strategies for efficient control under contact interactions.


1976 ◽  
Vol 15 (05) ◽  
pp. 248-253
Author(s):  
A. K. Basu ◽  
S. K. Guha ◽  
B. N. Tandon ◽  
M. M. Gupta ◽  
M. ML. Rehani

SummaryThe conventional radioisotope scanner has been used as a whole body counter. The background index of the system is 10.9 counts per minute per ml of sodium iodide crystal. The sensitivity and derived sensitivity parameters have been evaluated and found to be suitable for clinical studies. The optimum parameters for a single detector at two positions above the lying subject have been obtained. It has been found that for the case of 131I measurement it is possible to assay a source located at any point in the body with coefficient of variation less than 5%. To add to the versatility, a fixed geometry for in-vitro counting of large samples has been obtained. The retention values obtained by the whole body counter have been found to correlate with those obtained by in-vitro assay of urine and stool after intravenous administration of 51Cr-albumin.


2008 ◽  
Vol 396-398 ◽  
pp. 569-572
Author(s):  
Fumio Watari ◽  
Shigeaki Abe ◽  
I.D. Rosca ◽  
Atsuro Yokoyama ◽  
Motohiro Uo ◽  
...  

Nanoparticles may invade directly into the internal body through the respiratory or digestive system and diffuse inside body. The behavior of nanoparticles in the internal body is also essential to comprehend for the realization of DDS. Thus it is necessary to reveal the internal dynamics for the proper treatments and biomedical applications of nanoparticles. In the present study the plural methods with different principles such as X-ray scanning analytical microscope (XSAM), MRI and Fluorescent microscopy were applied to enable the observation of the internal diffusion of micro/nanoparticles in the (1) whole body level, (2) inner organ level and (3) tissue and intracellular level. Chemical analysis was also done by ICP-AES for organs and compared with the results of XSAM mapping.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitry M. Davydov ◽  
Andrey Boev ◽  
Stas Gorbunov

AbstractSituational or persistent body fluid deficit (i.e., de- or hypo-hydration) is considered a significant health risk factor. Bioimpedance analysis (BIA) has been suggested as an alternative to less reliable subjective and biochemical indicators of hydration status. The present study aimed to compare various BIA models in the prediction of direct measures of body compartments associated with hydration/osmolality. Fish (n = 20) was selected as a biological model for physicochemically measuring proximate body compartments associated with hydration such as water, dissolved proteins, and non-osseous minerals as the references or criterion points. Whole-body and segmental/local impedance measures were used to investigate a pool of BIA models, which were compared by Akaike Information Criterion in their ability to accurately predict the body components. Statistical models showed that ‘volumetric-based’ BIA measures obtained in parallel, such as distance2/Rp, could be the best approach in predicting percent of body moisture, proteins, and minerals in the whole-body schema. However, serially-obtained BIA measures, such as the ratio of the reactance to resistance and the resistance adjusted for distance between electrodes, were the best fitting in predicting the compartments in the segmental schema. Validity of these results should be confirmed on humans before implementation in practice.


Birds ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 138-146
Author(s):  
Eduardo J. Rodríguez-Rodríguez ◽  
Juan J. Negro

The family Ciconiidae comprises 19 extant species which are highly social when nesting and foraging. All species share similar morphotypes, with long necks, a bill, and legs, and are mostly coloured in the achromatic spectrum (white, black, black, and white, or shades of grey). Storks may have, however, brightly coloured integumentary areas in, for instance, the bill, legs, or the eyes. These chromatic patches are small in surface compared with the whole body. We have analyzed the conservatism degree of colouration in 10 body areas along an all-species stork phylogeny derived from BirdTRee using Geiger models. We obtained low conservatism in frontal areas (head and neck), contrasting with a high conservatism in the rest of the body. The frontal areas tend to concentrate the chromatic spectrum whereas the rear areas, much larger in surface, are basically achromatic. These results lead us to suggest that the divergent evolution of the colouration of frontal areas is related to species recognition through visual cue assessment in the short-range, when storks form mixed-species flocks in foraging or resting areas.


2021 ◽  
Vol 17 (3) ◽  
pp. 422-430
Author(s):  
Federico Massini ◽  
Lars Ebert ◽  
Garyfalia Ampanozi ◽  
Sabine Franckenberg ◽  
Lena Benz ◽  
...  

AbstractEvidence acquisition, interpretation and preservation are essential parts of forensic case work that make a standardized documentation process fundamental. The most commonly used method for the documentation and interpretation of superficial wounds is a combination of two modalities: two-dimensional (2D) photography for evidence preservation and real-life examination for wound analysis. As technologies continue to develop, 2D photography is being enhanced with three-dimensional (3D) documentation technology. In our study, we compared the real-life examination of superficial wounds using four different technical documentation and visualization methods.To test the different methods, a mannequin was equipped with several injury stickers, and then the different methods were applied. A total of 42 artificial injury stickers were documented in regard to orientation, form, color, size, wound borders, wound corners and suspected mechanism of injury for the injury mechanism. As the gold standard, superficial wounds were visually examined by two board-certified forensic pathologists directly on the mannequin. These results were compared to an examination using standard 2D forensic photography; 2D photography using the multicamera system Botscan©, which included predefined viewing positions all around the body; and 3D photogrammetric reconstruction based on images visualized both on screen and in a virtual reality (VR) using a head-mounted display (HMD).The results of the gold standard examination showed that the two forensic pathologists had an inter-reader agreement ranging from 69% for the orientation and 11% for the size of the wounds. A substantial portion of the direct visual documentation showed only a partial overlap, especially for the items of size and color, thereby prohibiting the statistical comparison of these two items. A forest plot analysis of the remaining six items showed no significant difference between the methods. We found that among the forensic pathologists, there was high variability regarding the vocabulary used for the description of wound morphology, which complicated the exact comparison of the two documentations of the same wound.There were no significant differences for any of the four methods compared to the gold standard, thereby challenging the role of real-life examination and 2D photography as the most reliable documentation approaches. Further studies with real injuries are necessary to support our evaluation that technical examination methods involving multicamera systems and 3D visualization for whole-body examination might be a valid alternative in future forensic documentation.


Author(s):  
Dominic L. C. Guebelin ◽  
Akos Dobay ◽  
Lars Ebert ◽  
Eva Betschart ◽  
Michael J. Thali ◽  
...  

AbstractDead bodies exhibit a variable range of changes with advancing decomposition. To quantify intracorporeal gas, the radiological alteration index (RAI) has been implemented in the assessment of postmortem whole-body computed tomography. We used this RAI as a proxy for the state of decomposition. This study aimed to (I) investigate the correlation between the state of decomposition and the season in which the body was discovered; and (II) evaluate the correlations between sociodemographic factors (age, sex) and the state of decomposition, by using the RAI as a proxy for the extent of decomposition. In a retrospective study, we analyzed demographic data from all autopsy reports from the Institute of Forensic Medicine of Zurich between January 2017 to July 2019 and evaluated the radiological alteration index from postmortem whole-body computed tomography for each case. The bodies of older males showed the highest RAI. Seasonal effects had no significant influence on the RAI in our urban study population with bodies mostly being discovered indoors. Autopsy reports contain valuable data that allow interpretation for reasons beyond forensic purposes, such as sociopolitical observations.


Sign in / Sign up

Export Citation Format

Share Document