scholarly journals A psychrometric model to assess the biological decay of the SARS-CoV-2 virus in aerosols

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11024
Author(s):  
Clive B. Beggs ◽  
Eldad J. Avital

There is increasing evidence that the 2020 COVID-19 pandemic has been influenced by variations in air temperature and humidity. However, the impact that these environmental parameters have on survival of the SARS-CoV-2 virus has not been fully characterised. Therefore, an analytical study was undertaken using published data to develop a psychrometric model to assess the biological decay rate of the virus in aerosols. This revealed that it is possible to describe with reasonable accuracy (R2 = 0.718, p < 0.001) the biological decay constant for the SARS-CoV-2 virus using a regression model with enthalpy, vapour pressure and specific volume as predictors. Applying this to historical meteorological data from London, Paris and Milan over the pandemic period, produced results which indicate that the average half-life of the virus in aerosols outdoors was in the region 13–22 times longer in March 2020, when the outbreak was accelerating, than it was in August 2020 when epidemic in Europe was at its nadir. However, indoors, this variation is likely to be much less. As such, this suggests that changes in virus survivability due the variations in the psychrometric qualities of the air might influence the transmission of SARS-CoV-2.

2020 ◽  
Author(s):  
Clive B. Beggs ◽  
Eldad J. Avital

AbstractThere is increasing evidence that the 2020 COVID-19 pandemic has been influenced by variations in air temperature and humidity. However, the impact that these environmental parameters have on survival of the SARS-CoV-2 virus has not been fully characterised. Therefore an analytical study was undertaken using published data to develop a psychrometric model to predict the biological decay rate of the virus in aerosols. This revealed that it is possible to predict with a high degree of accuracy (R2 = 0.718, p<0.001) the biological decay constant for SARS-CoV-2 using a regression model with enthalpy, vapour pressure and specific volume as predictors. Applying this to historical meteorological data from London, Paris and Milan over the pandemic period, produced results which indicate that the average half-life of the virus in aerosols was in the region 13-21 times longer in March 2020, when the outbreak was accelerating, than it was in August 2020 when epidemic in Europe was at its nadir. As such, this suggests that changes in virus survivability due the variations in the psychrometric qualities of the air might influence the transmission of COVID-19.


2019 ◽  
Vol 221 (3) ◽  
pp. 372-378 ◽  
Author(s):  
Michael Schuit ◽  
Sierra Gardner ◽  
Stewart Wood ◽  
Kristin Bower ◽  
Greg Williams ◽  
...  

Abstract Background Environmental parameters, including sunlight levels, are known to affect the survival of many microorganisms in aerosols. However, the impact of sunlight on the survival of influenza virus in aerosols has not been previously quantified. Methods The present study examined the influence of simulated sunlight on the survival of influenza virus in aerosols at both 20% and 70% relative humidity using an environmentally controlled rotating drum aerosol chamber. Results Measured decay rates were dependent on the level of simulated sunlight, but they were not significantly different between the 2 relative humidity levels tested. In darkness, the average decay constant was 0.02 ± 0.06 min−1, equivalent to a half-life of 31.6 minutes. However, at full intensity simulated sunlight, the mean decay constant was 0.29 ± 0.09 min−1, equivalent to a half-life of approximately 2.4 minutes. Conclusions These results are consistent with epidemiological findings that sunlight levels are inversely correlated with influenza transmission, and they can be used to better understand the potential for the virus to spread under varied environmental conditions.


2021 ◽  
pp. 1-42
Author(s):  
Emmanuel Panagiotakis ◽  
Dionysia Kolokotsa ◽  
Nektarios Chrysoulakis

The present paper aims to study the impact of Nature Based Solutions (NBS) on the urban environment. The Surface Urban Energy and Water balance Scheme (SUEWS) is used to quantify the impact of NBS in the city of Heraklion, Crete, Greece, a densely built urban area. Local meteorological data and data from an Eddy Covariance flux tower installed in the city center are used for the model simulation and evaluation. Five different scenarios are tested by replacing the city’s roofs and pavements with green infrastructure, i.e., trees and grass, and water bodies. The NBS impact evaluation is based on the changes of air temperature above 2m from the ground, relative humidity and energy fluxes. A decrease of the air temperature is revealed with the highest reduction (2.3%) occurring when the pavements are replaced with grass for all scenarios. The reduction of the air temperature is followed by a decrease in turbulent sensible heat flux. For almost all cases, an increase of the relative humidity is noticed, accompanied by a considerable increase of the turbulent latent heat flux. Therefore, NBS in cities change the energy balance significantly and modify the urban environment for the citizens' benefit.


2011 ◽  
Vol 8 (1) ◽  
pp. 1669-1691 ◽  
Author(s):  
B. C. Zhang ◽  
J. J. Cao ◽  
Y. F. Bai ◽  
S. J. Yang ◽  
L. Hu ◽  
...  

Abstract. Clouds can strongly influence solar radiation and affects other microclimatic factors (such as air temperature and vapour pressure deficit), and those changed environmental conditions may exert strong effects on carbon exchange between terrestrial ecosystems and the atmosphere. In this study, we analyzed how canopy photosynthesis and ecosystem respiration respond to changes in cloudy conditions, based on two years of eddy-covariance and meteorological data from an irrigated maize cropland in Yingke oasis of northwestern China. The results showed that net carbon uptake was more negative under cloudy than under clear conditions, it indicates that net carbon uptake increased under cloudy days. The rate of ecosystem respiration (Re) decreased under cloudy conditions due to decreased air temperature. However, photosynthesis was suppressed by the decreasing air temperature and vapour pressure deficit (VPD) under cloudy skies. Thus, the enhancement of net carbon uptake under cloudy skies mainly contributed from increasing photosynthesis with diffuse radiation. Those results improve our understanding of the effects of cloud cover on carbon exchange process in maize (C4) cropland, and improve our understanding of the driver improving net carbon uptake under cloudy conditions.


Author(s):  
Apeksha D. Patil ◽  
Dhiraj B. Patil

Karaveera (Cerebra thevetia Linn.) is reported under Upavisha Dravya in classical ayurvedic pharmacopeias. It is observed that Shodhana (purification procedures) of the mool should be carried out before its internal administration. There are different Shodhana methods mentioned in Ayurveda. In this study Godugdha was used as media. The impact of Shodhana was evaluated by physico analytical study. It clearly proves physico analytical changes during Shodhana. Ashuddha Karaveera was taken on white clean cloth and they dumped in Pottali with Godugdha. Pottali was tied to middle of wooden rod dipped in Godugdha in stainless steel vessel and mild heat given to pottali in Dolayantra. Shuddha Karaveera was obtained and then washed with leuk warm water and dried. Ashuddha Karaveera contains toxin in it which was removed after Shodhana process. So that foreign matter, loss on drying was less in Shuddha Karaveera and due to Shodhan process with Godugdha total ash, acid insoluble ash was more than that of Ashuddha Karaveera.


2021 ◽  
Vol 13 (4) ◽  
pp. 640
Author(s):  
Sadroddin Alavipanah ◽  
Dagmar Haase ◽  
Mohsen Makki ◽  
Mir Muhammad Nizamani ◽  
Salman Qureshi

The changing climate has introduced new and unique challenges and threats to humans and their environment. Urban dwellers in particular have suffered from increased levels of heat stress, and the situation is predicted to continue to worsen in the future. Attention toward urban climate change adaptation has increased more than ever before, but previous studies have focused on indoor and outdoor temperature patterns separately. The objective of this research is to assess the indoor and outdoor temperature patterns of different urban settlements. Remote sensing data, together with air temperature data collected with temperature data loggers, were used to analyze land surface temperature (outdoor temperature) and air temperature (indoor temperature). A hot and cold spot analysis was performed to identify the statistically significant clusters of high and low temperature data. The results showed a distinct temperature pattern across different residential units. Districts with dense urban settlements show a warmer outdoor temperature than do more sparsely developed districts. Dense urban settlements show cooler indoor temperatures during the day and night, while newly built districts show cooler outdoor temperatures during the warm season. Understanding indoor and outdoor temperature patterns simultaneously could help to better identify districts that are vulnerable to heat stress in each city. Recognizing vulnerable districts could minimize the impact of heat stress on inhabitants.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


Author(s):  
Gary Sutlieff ◽  
Lucy Berthoud ◽  
Mark Stinchcombe

Abstract CBRN (Chemical, Biological, Radiological, and Nuclear) threats are becoming more prevalent, as more entities gain access to modern weapons and industrial technologies and chemicals. This has produced a need for improvements to modelling, detection, and monitoring of these events. While there are currently no dedicated satellites for CBRN purposes, there are a wide range of possibilities for satellite data to contribute to this field, from atmospheric composition and chemical detection to cloud cover, land mapping, and surface property measurements. This study looks at currently available satellite data, including meteorological data such as wind and cloud profiles, surface properties like temperature and humidity, chemical detection, and sounding. Results of this survey revealed several gaps in the available data, particularly concerning biological and radiological detection. The results also suggest that publicly available satellite data largely does not meet the requirements of spatial resolution, coverage, and latency that CBRN detection requires, outside of providing terrain use and building height data for constructing models. Lastly, the study evaluates upcoming instruments, platforms, and satellite technologies to gauge the impact these developments will have in the near future. Improvements in spatial and temporal resolution as well as latency are already becoming possible, and new instruments will fill in the gaps in detection by imaging a wider range of chemicals and other agents and by collecting new data types. This study shows that with developments coming within the next decade, satellites should begin to provide valuable augmentations to CBRN event detection and monitoring. Article Highlights There is a wide range of existing satellite data in fields that are of interest to CBRN detection and monitoring. The data is mostly of insufficient quality (resolution or latency) for the demanding requirements of CBRN modelling for incident control. Future technologies and platforms will improve resolution and latency, making satellite data more viable in the CBRN management field


Sign in / Sign up

Export Citation Format

Share Document