scholarly journals Methyl jasmonate enhances ursolic, oleanolic and rosmarinic acid production and sucrose induced biomass accumulation, in hairy roots of Lepechinia caulescens

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11279
Author(s):  
Victor M. Vergara-Martínez ◽  
Samuel E. Estrada-Soto ◽  
Susana Valencia-Díaz ◽  
Karlina Garcia-Sosa ◽  
Luis Manuel Peña-Rodríguez ◽  
...  

Background Ursolic (UA), oleanolic (OA) and rosmarinic (RA) acids are bioactive metabolites found in Lepechinia caulescens that have generated interest for their health benefits, which include antimicrobial, antioxidant, antimutagenic, gastroprotective, antidiabetic, antihypertensive and anti-inflammatory properties, among others. To date, very few attempts have been made to evaluate the potential for simultaneous production of these bioactive compounds, using a biotechnological approach. Hairy root cultures offer a biotechnology approach that can be used to study the factors affecting the biosynthesis and the production of UA, OA and RA. In the current study, we established hairy root cultures of L. caulescens and evaluated the effect of sucrose on biomass accumulation, and the effect of different concentrations and times of exposure of methyl jasmonate (MeJA), on the accumulation of UA, OA and RA. Methods Leaves from plants of L. caulescens were inoculated with Agrobacterium rhizogenes strain ATCC 15834. PCR of rolB gene confirmed the transgenic nature of hairy roots. Hairy roots were subcultured in semisolid MSB5 medium, supplemented with 15, 30, 45 or 60 g/L sucrose and after 4 weeks, dry weight was determined. The accumulation of UA, OA and RA of wild plants and hairy roots were determined by HPLC. Finally, the hairy roots were treated with 0, 100, 200 and 300 µM of MeJA and the content of bioactive compounds was analyzed, after 24, 48 and 72 h. Results High frequency transformation (75%) was achieved, using leaf explants from axenic seedlings, infected with A. rhizogenes. The hairy roots showed an enhanced linear biomass accumulation, in response to the increase in sucrose concentration. The hairy root cultures in MSB5 medium, supplemented with 45 g/L sucrose, were capable to synthesizing UA (0.29 ± 0.00 mg/g DW), OA (0.57 ± 0.00 mg/g DW) and RA (41.66 ± 0.31 mg/g DW), about two, seven and three times more, respectively, than in roots from wild plants. Elicitation time and concentration of MeJA resulted in significant enhancement in the production of UA, OA and RA, with treatments elicited for 24 h, with a concentration of 300 µM of MeJA, exhibiting greatest accumulation. Conclusion This is the first report on development of hairy root cultures of L. caulescens. Future studies should aim towards further improving triterpenes and polyphenolic compound production in hairy roots of L. caulescens, for use in the pharmaceutical and biotechnological industry.

2020 ◽  
Vol 48 (2) ◽  
pp. 839-848
Author(s):  
Shuang ZHAO ◽  
Hong TANG

Valtrate is a pharmacologically active epoxyiridoid ester found in the roots and rhizomes of Valeriana jatamansi Jones. The plant produces only small amounts of this metabolite naturally, and so induction of hairy roots as well as elicitation can be useful to increase its commercial production. In this study, strain R1601 of Agrobacterium rhizogenes was used to induce hairy roots in V. jatamansi, and stable hairy root cultures of V. jatamansi were established successfully. The influence of three exogenous elicitors including methyl jasmonate (MJ), jasmonic acid (JA) and salicylic acid (SA) on valtrate production in the hairy root cultures of V. jatamansi was also investigated, and the 25-day-old hairy root cultures were treated with different concentrations of the elicitors at exposure time of 7 days. This present study showed that MJ (100 mg/L) highly promoted valtrate production at 7 days after elicitation, to a level of 3.63 times higher than that of non-elicited control. SA did not significantly increase the production of valtrate. This is the first-time study to assess the elicitation of hairy root cultures to promote valtrate biosynthesis in V. jatamansi and the resulting experiments demonstrated that MJ was indeed a potent inducer of valtrate biosynthesis.


2019 ◽  
Vol 9 (3) ◽  
pp. 415-420
Author(s):  
L. P. Khlebova ◽  
E. S. Brovko ◽  
O. V. Bychkova ◽  
N. V. Pavlova

The hairy root cultures are promising sources of secondary metabolites of plants, including rare and endangered species. They possess genetic and biochemical stability, unlimited growth rate in free-hormone medium, short doubling times, high biosynthetic activity and ecological purity of plant raw materials. The hairy root cultures of Tagetes patula L. can be used to produce biologically active substances with biocidal activity. The study aimed to determine the virulent strain of Agrobacterium rhizogenes and the most effective period of co-cultivation of T. patula leaf explants with an agrobacterium to induce actively growing hairy root cultures. We used 3 strains (A-4b, 8196RT and 15834). The time of infection ranged from 3 to 33 hours in increments of 3 hours. We found that 24 h is the best time of infection to induce hairy roots with the highest transformation efficiency (92%). The wild strain A. rhizogenes 15834 turned out to be the most virulent when infected leaf explants of spreading marigold. This strain provided the maximum transformation effect, reaching 85.4%. We have identified 5 actively growing clones of hairy roots with intensive branching, the growth indices of which were 64-75. In the future, they will be transferred to a liquid medium for biomass accumulation and scaling.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Khoa Van Nguyen ◽  
Benyakan Pongkitwitoon ◽  
Thanika Pathomwichaiwat ◽  
Unchera Viboonjun ◽  
Sompop Prathanturarug

AbstractIn this study, the effects of methyl jasmonate (MeJA) on the phytomass and triterpenoid production of diploid and tetraploid Centella asiatica hairy roots were investigated. Hairy root cultures were obtained from diploid and induced tetraploid plants of C. asiatica infected by Agrobacterium rhizogenes strain ATCC 43057. MeJA triggered triterpenoid production in both ploidy hairy roots, whereas triterpenoids were not produced in the untreated hairy roots. Among the treatments, the 50 µM MeJA treatment yielded the maximum triterpenoid production in diploid hairy roots of 27.25 ± 0.27 µg/mg Dry weight (DW) total triterpenoid at day 21. For the tetraploid hairy root cultures, the 28th-day hairy root culture produced a maximum amount of triterpenoids of 16.29 ± 6.32 µg/mg DW in response to the 50 µM MeJA treatment, whereas the 100 µM MeJA treatment produced a similar triterpenoid amount (16.31 ± 9.24 µg/mg DW) at day 14. Moreover, in response to 50 µM MeJA, we obtained different ratios of aglycone to glycoside, i.e., 1:7 and 1:2, between the diploid and tetraploid hairy root cultures. Asiaticoside was the dominant phytochemical, followed by asiatic acid and madecassic acid. This study provides valuable information for producing triterpenoids for C. asiatica commercial products and preparations by using hairy root cultures.


Author(s):  
Veeresham C ◽  
C.S. Reddy ◽  
Praveena Ch

The aim of this study was to elucidate the effect of elicitors and precursors on the production of forskolin from the hairy root cultures of Coleus forskohlii Briq. Hairy root cultures were established from leaf explants by infecting with Agrobacterium rhizogenes strain A4 on MS basal medium. Suspension cultures of hairy root cultures were initiated in MS medium containing IBA (1.0 mg/L), casein hydrolysate (600 mg/L). We investigated the growth of biomass and forskolin production in suspension cultures of hairy roots. The production of forskolin was parallel to the growth of biomass. The maximum production of forskolin was observed after 5 weeks. With the objective to increase the yield of forskolin, abiotic elicitors such as salicylic acid (100 μM and 500 μM), copper sulphate (100 μM and 500 μM), methyl jasmonate (100 μM and 500 μM) and precursors such as α-ketoglutaric acid (0.2 mM and 1.0 mM), L-phenylalanine (0.2 mM and 1.0 mM) were added to hairy root cultures on different days of incubation period and evaluated their effects on production of forskolin. Elicitor, methyl jasmonate (500 μM) and the precursor, L-phenylalanine (1 mM) on day-14 addition significantly enhanced the production of forskolin over the control hairy root cultures C. forskohlii. Given forskolin’s limited commercial supply, this study provides avenues for improving the production of forskolin in the hairy root culture of C. forskohlii.


2021 ◽  
Author(s):  
Parvaneh Abrishamchi ◽  
Samaneh Attaran Dowom ◽  
Tayebeh Radjabian ◽  
Seyed Alireza Salami

Abstract Phenolic acids, as the predominant secondary metabolites of Salvia species, are largely used in pharmaceutical industries. The main aim of the study was to establish hairy root cultures of Salvia virgata Jacq. Also, the effects of methyl jasmonate (22.4 and 11.2 ppm), Ag+ ions (5 and 2.5 ppm), and yeast extract (100 and 50 ppm) were assessed on total phenol, total flavonoid, rosmarinic acid, salvianolic acid A, and caffeic acid contents in the hairy roots after 1, 3 and 5 days of exposure. Results showed the used Agrobacterium rhizogenes strains (A4, ATCC15834, R1000, GM1534, and C58C1) differed in their ability to induce hairy roots on leaf explants. The transformed roots were molecularly confirmed using rolC gene and the highest transformation frequency (56 %) was obtained by ATCC 15834 strain. Among the established hairy root lines, the highest amount of rosmarinic acid (0.45 ± 0.01 mg/g DW) and dry root biomass (2.29 ± 0.04 g) was obtained in AT3, the line which was induced by ATCC 15834 strain. The maximum accumulation of total phenol (123.6 ± 0.93 mg GAE/g DW), total flavonoid (5.09 ± 0.07 mg QUE/g DW), rosmarinic acid (18.45 ± 0.8 mg/g DW), salvianolic acid A (2.11 ± 0.04 mg/g DW) and caffeic acid (2.61 ± 0.02 mg/g DW) was observed in the hairy roots elicited with 22.4 ppm methyl jasmonate on day three after treatment. The results support that elicitation could be an effective procedure for the improvement of caffeic acid derivatives production in S. virgata hairy root cultures.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 534 ◽  
Author(s):  
Amir Akhgari ◽  
Into Laakso ◽  
Hannu Maaheimo ◽  
Young Hae Choi ◽  
Tuulikki Seppänen-Laakso ◽  
...  

Methyl jasmonate is capable of initiating or improving the biosynthesis of secondary metabolites in plants and therefore has opened up a concept for the biosynthesis of valuable constituents. In this study, the effect of different doses of methyl jasmonate (MeJA) elicitation on the accumulation of terpenoid indole alkaloids (TIAs) in the hairy root cultures of the medicinal plant, Rhazya stricta throughout a time course (one-seven days) was investigated. Gas chromatography-mass spectrometry (GC-MS) analyses were carried out for targeted ten major non-polar alkaloids. Furthermore, overall alterations in metabolite contents in elicited and control cultures were investigated applying proton nuclear magnetic resonance (1H NMR) spectroscopy. Methyl jasmonate caused dosage- and time course-dependent significant rise in the accumulation of TIAs as determined by GC-MS. The contents of seven alkaloids including eburenine, quebrachamine, fluorocarpamine, pleiocarpamine, tubotaiwine, tetrahydroalstonine, and ajmalicine increased compared to non-elicited cultures. However, MeJA-elicitation did not induce the accumulation of vincanine, yohimbine (isomer II), and vallesiachotamine. Furthermore, principal component analysis (PCA) of 1H NMR metabolic profiles revealed a discrimination between elicited hairy roots and control cultures with significant increase in total vindoline-type alkaloid content and elevated levels of organic and amino acids. In addition, elicited and control samples had different sugar and fatty acid profiles, suggesting that MeJA also influences the primary metabolism of R. stricta hairy roots. It is evident that methyl jasmonate is applicable for elevating alkaloid accumulation in “hairy root” organ cultures of R. strica.


2015 ◽  
Vol 10 (11) ◽  
pp. 1934578X1501001
Author(s):  
Yeon Bok Kim ◽  
Darwin W. Reed ◽  
Patrick S. Covello

Silene vulgaris (Moench) Garcke (Caryophyllaceae) is widely distributed in North America and contains bioactive oleanane-type saponins. In order to investigate in vitro production of triterpenoid saponins, hairy root cultures of S. vulgaris were established by infecting leaf explants with five strains of Agrobacterium rhizogenes (LBA9402, R1000, A4, 13333, and 15834). The A. rhizogenes strain LBA9402 had an infection of 100% frequency and induced the most hairy roots per plant. Methyl jasmonate (MeJA)-induced changes in triterpenoid saponins in S. vulgaris hairy roots were analyzed. Accumulation of segetalic acid and gypsogenic acid after MeJA treatment was 5-and 2-fold higher, respectively, than that of control root. We suggest that hairy root cultures of S. vulgaris could be an important alternative approach to the production of saponins.


2020 ◽  
Vol 71 (22) ◽  
pp. 6861-6864
Author(s):  
María A Pedreño ◽  
Lorena Almagro

This article comments on: Barba-Espín G, Chen S-T, Agnolet S, Hegelund JN, Stanstrup J, Christensen JH, Müller R, Lütken H. 2020. Ethephon-induced changes in antioxidants and phenolic compounds in anthocyanin-producing black carrot hairy root cultures. Journal of Experimental Botany 71, 7030–7045.


Sign in / Sign up

Export Citation Format

Share Document