scholarly journals Climatic niche shift and possible future spread of the invasive South African Orchid Disa bracteata in Australia and adjacent areas

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6107 ◽  
Author(s):  
Kamil Konowalik ◽  
Marta Kolanowska

Orchids are generally regarded as plants with an insignificant invasive potential and so far only one species has proved to be harmful for native flora. However, previous studies on Epipactis helleborine and Arundina graminifolia indicate that the ecological aspects of range extension in their non-native geographical range are not the same for all species of orchids. Disa bracteata in its native range, South Africa, is categorized as of little concern in terms of conservation whereas in Australia it is naturalized and considered to be an environmental weed. The aim of this research was to determine the ecological preferences enabling the spread of Disa bracteata in Western and South Australia, Victoria and Tasmania and to evaluate the effect of future climate change on its potential range. The ecological niche modeling approach indicates that most of the accessible areas are already occupied by this species but future expansion will continue based on four climate change scenarios (rcp26, rcp45, rcp60, rcp85). Further expansion is predicted especially in eastern Australia and eastern Tasmania. Moreover, there are some unpopulated but suitable habitats in New Zealand, which according to climate change scenarios will become even more suitable in the future. The most striking result of this study is the significant difference between the environmental conditions recorded in the areas which D. bracteata naturally inhabits and invasive sites—that indicates a possible niche shift. In Australia the studied species continues to populate a new niche or exploit habitats that are only moderately represented in South Africa.

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 831
Author(s):  
Roberta Marques ◽  
Juliano Lessa Pinto Duarte ◽  
Adriane da Fonseca Duarte ◽  
Rodrigo Ferreira Krüger ◽  
Uemmerson Silva da Cunha ◽  
...  

Lycoriella species (Sciaridae) are responsible for significant economic losses in greenhouse production (e.g., mushrooms, strawberries, and nurseries). The current distributions of species in the genus are restricted to cold-climate countries. Three species of Lycoriella are of particular economic concern in view of their ability to invade areas in countries across the Northern Hemisphere. We used ecological niche models to determine the potential for range expansion under future climate change scenarios (RCP 4.5 and RCP 8.5) in the distribution of these three species of Lycoriella. Stable environmental suitability under climate change was a dominant theme in these species; however, potential range increases were noted in key countries (e.g., USA, Brazil, and China). Our results illustrate the potential for range expansion in these species in the Southern Hemisphere, including some of the highest greenhouse production areas in the world.


2021 ◽  
Author(s):  
Lingliang Guan ◽  
YuXia Yang ◽  
Pan Jiang ◽  
Qiuyu Mou ◽  
Yunsha Gou ◽  
...  

Abstract Blumea balsamifera is a famous Chinese Minority Medicine, which has a long history in Miao, Li, Zhuang and other minority areas. In recent years, due to the influence of natural and human factors, the distribution area of B. balsamifera resources has a decreasing trend. Therefore, it is very important to analyze the suitability of B. balsamifera in China. Following three climate change scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) under 2050s and 2070s, geographic information technology (GIS) and maximum entropy model (MaxEnt) were used to simulate the ecological suitability of B. balsamifera. The contents of L-borneol and total flavonoids of B. balsamifera in different populations were determined by gas chromatography (GC) and ultraviolet spectrophotometry (UV). The results showed that the key environmental variables affecting the distribution of B. balsamifera were mean temperature of coldest quarter (6.18-26.57 ℃), precipitation of driest quarter (22.46-169.7 mm), annual precipitation (518.36-1845.29 mm) and temperature seasonality (291.31-878.87). Under current climate situation, the highly suitable habitat was mainly located western Guangxi, southern Yunnan, most of Hainan, southwestern Guizhou, southwestern Guangdong, southeastern Fujian and western Taiwan, with a total area of 24.1×104 km2. The areas of the moderately and poorly suitable habitats were 27.57×104 km2 and 42.43×104 km2, respectively. Under the future climate change scenarios, the areas of the highly, moderately, and poorly suitable habitats of B. balsamifera showed a significant increasing trend, the geometric center of the total suitable habitats of B. balsamifera would move to the northeast. In recent years, the planting area of B. balsamifera has been reduced on a large scale in Guizhou, and its ex situ protection is imperative. By comparison, the content of L-borneol, total flavonoids and fresh leaf yield had no significant difference between Guizhou and Hainan (P > 0.05), which indicated that Hainan one of the best choice for ex-situ protection of B. balsamifera.


2009 ◽  
Vol 276 (1663) ◽  
pp. 1883-1888 ◽  
Author(s):  
Maria Byrne ◽  
Melanie Ho ◽  
Paulina Selvakumaraswamy ◽  
Hong D. Nguyen ◽  
Symon A. Dworjanyn ◽  
...  

Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20–26°C, pH 7.6–8.2) were tested in all combinations for the ‘business-as-usual’ scenario, with 20°C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4°C reduced cleavage by 40 per cent and +6°C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6°C. At 26°C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.


Author(s):  
Teng Long ◽  
Junfeng Tang ◽  
Nicholas Pilfold ◽  
Xuzhe Zhao ◽  
Tingfa Dong

Understanding and predicting how species will response to future climate change is crucial for biodiversity conservation. Here, we conducted an assessment of future climate change impacts on the distribution of D. involucrate in China, using the most recent global circulation models developed in the sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC6). We assessed the potential range shifts in this species by using an ensemble of species distribution models (SDMs). The ensemble SDMs exhibited high predictive ability and suggested that the temperature annual range, annual mean temperature, and precipitation of the driest month are the most influential predictors in shaping distribution patterns of this species. The projections of the ensemble SDMs also suggested that D. involucrate is very vulnerable to future climate change, with at least one-third of its suitable range expected to be lost in all future climate change scenarios and will shift to the northward of high-latitude regions. These findings suggest that it is of great urgent and significance to adaptive management strategies to mitigate the impacts of climate change on D. involucrate.


Oryx ◽  
2014 ◽  
Vol 49 (4) ◽  
pp. 611-618 ◽  
Author(s):  
Griet A.E. Cuyckens ◽  
Miriam M. Morales ◽  
Marcelo F. Tognelli

AbstractClimate change and habitat fragmentation are considered key pressures on biodiversity, and mammalian carnivores with a limited geographical distribution are particularly vulnerable. The kodkod Leopardus guigna, a small felid endemic to the temperate forests of southern Chile and Argentina, has the smallest geographical range of any New World felid. Although the species occurs in protected areas in both countries, it is not known how well these areas protect the kodkod either currently or under climate change scenarios. We used species distribution models and spatial analyses to assess the distribution of the kodkod, examining the effects of changes in human land use and future climate change. We also assessed the species’ present representation in protected areas and in light of climate change scenarios. We found that the kodkod has already lost 5.5% of its range as a result of human land use, particularly in central areas of its distribution with intermediate habitat suitability. Climate change, together with human land use, will affect 40% of the kodkod's present potential distribution by the year 2050. Currently, 12.5% of the species’ potential distribution lies in protected areas and this will increase to 14% in the future. This increase does not, however, mean an increase in protected habitat but rather a reduction of the species' total potential range; a relatively larger percentage will be protected in Argentina than in Chile but the species is more susceptible to extinction in Argentina and the Chilean Matorral.


2017 ◽  
Vol 23 (1) ◽  
pp. 37-62 ◽  
Author(s):  
Wijaya Dassanayake ◽  
Sandeep Mohapatra ◽  
Martin K. Luckert ◽  
Wiktor Adamowicz

AbstractWe investigate households' decisions regarding livelihood activities in response to future climate change in the Eastern Cape, South Africa. We use the contingent behavior method and account for unobserved heterogeneity in order to overcome problems associated with limited data, collinearity and endogeneity. We characterize the climate change with two types of climate change scenarios: dry-spells and wet-spells. Results show that moderate and extreme increases in dry-spells increase adoption of off-farm activities such as casual labor and small business, and decrease adoption of on-farm activities such as gardening. We find opposite cases for mild or moderate wet-spells. Our results also show that households tend to diversify their livelihood portfolios in response to a moderate increase in dry-spells and a mild increase in wet-spells. Some household characteristics are also important in influencing some types of activities, including household's health status, gender of the household head, and household's prior experience.


Water SA ◽  
2021 ◽  
Vol 47 (1 January) ◽  
Author(s):  
Simone Norah Theron ◽  
Harold Louw Weepener ◽  
Jacobus Johannes Le Roux ◽  
Christina Johanna Engelbrecht

The effects of climate change on water resources could be numerous and widespread, affecting water quality and water security across the globe. Variations in rainfall erosivity and temporal patterns, along with changes in biomass and land use, are some of the impacts climate change is projected to have on soil erosion. Sedimentation of watercourses and reservoirs, especially in water-stressed regions such as sub-Saharan Africa, may hamper climate change resilience. Modelling sediment yield under various climate change scenarios is vital to develop mitigation strategies which offset the negative effects of erosion and ensure infrastructure remains sustainable under future climate change. This study investigated the relative change in sediment yield with projected climate change using the Soil and Water Assessment Tool (SWAT) for a rural catchment in South Africa for the period 2015–2100. Data from six downscaled Coupled Global Climate Models (CGCM) were divided into three shorter time periods, namely, 2015–2034, 2045–2064 and 2081–2100. Results were then compared with a control scenario using observed data for the period 2002–2017. The results show that, if left unmanaged, climate change will likely lead to greater sediment yield, of up to 10% more per annum. Peak sediment yield will also increase almost three-fold throughout the century. The study shows that projected climate change will have multiple negative effects on soil erosion and emphasised the need for changes in climate to be considered when embarking on water resource developments.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


Sign in / Sign up

Export Citation Format

Share Document