scholarly journals Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6682 ◽  
Author(s):  
Mengyao Li ◽  
Bo Sun ◽  
Fangjie Xie ◽  
Ronggao Gong ◽  
Ya Luo ◽  
...  

GRAS transcription factors are known to play important roles in plant signal transduction and development. A comprehensive study was conducted to explore the GRAS family in the Brassica juncea genome. A total of 88 GRAS genes were identified which were categorized into nine groups according to the phylogenetic analysis. Gene structure analysis showed a high group-specificity, which corroborated the gene grouping results. The chromosome distribution and sequence analysis suggested that gene duplication events are vital for the expansion of GRAS genes in the B. juncea genome. The changes in evolution rates and amino acid properties among groups might be responsible for their functional divergence. Interaction networks and cis-regulatory elements were analyzed including DELLA and eight interaction proteins (including four GID1, two SLY1, and two PIF3 proteins) that are primarily involved in light and hormone signaling. To understand their regulatory role in growth and development, the expression profiles of BjuGRASs and interaction genes were examined based on transcriptome data and qRT-PCR, and selected genes (BjuGRAS3, 5, 7, 8, 10, BjuB006276, BjuB037910, and BjuA021658) had distinct temporal expression patterns during stem swelling, indicating that they possessed diverse regulatory functions during the developmental process. These results contribute to our understanding on the GRAS gene family and provide the basis for further investigations on the evolution and functional characterization of GRAS genes.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

AbstractMultidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


2021 ◽  
Vol 22 (19) ◽  
pp. 10722
Author(s):  
Lu Lu ◽  
Quancan Hou ◽  
Linlin Wang ◽  
Tianye Zhang ◽  
Wei Zhao ◽  
...  

Polygalacturonase (PG, EC 3.2.1.15) is a crucial enzyme for pectin degradation and is involved in various developmental processes such as fruit ripening, pollen development, cell expansion, and organ abscission. However, information on the PG gene family in the maize (Zea mays L.) genome and the specific members involved in maize anther development are still lacking. In this study, we identified 55 PG family genes from the maize genome and further characterized their evolutionary relationship and expression patterns. Phylogenetic analysis revealed that ZmPGs are grouped into six Clades, and gene structures of the same Clade are highly conserved, suggesting their functional conservation. The ZmPGs are randomly distributed across maize chromosomes, and collinearity analysis showed that many ZmPGs might be derived from tandem duplications and segmental duplications, and these genes are under purifying selection. Furthermore, gene expression analysis provided insights into possible functional divergence among ZmPGs. Based on the RNA-seq data analysis, we found that many ZmPGs are expressed in various tissues while 18 ZmPGs are highly expressed in maize anther, and their detailed expression profiles in different anther developmental stages were further investigated by using RT-qPCR analysis. These results provide valuable information for further functional characterization and application of the ZmPGs in maize.


2019 ◽  
Vol 20 (13) ◽  
pp. 3235 ◽  
Author(s):  
Yanguo Ke ◽  
Farhat Abbas ◽  
Yiwei Zhou ◽  
Rangcai Yu ◽  
Yuechong Yue ◽  
...  

Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.


2019 ◽  
Vol 20 (22) ◽  
pp. 5796
Author(s):  
Qianqian Zhou ◽  
Qingchang Li ◽  
Peng Li ◽  
Songtao Zhang ◽  
Che Liu ◽  
...  

Carotenoid cleavage dioxygenases (CCDs) selectively catalyze carotenoids, forming smaller apocarotenoids that are essential for the synthesis of apocarotenoid flavor, aroma volatiles, and phytohormone ABA/SLs, as well as responses to abiotic stresses. Here, 19, 11, and 10 CCD genes were identified in Nicotiana tabacum, Nicotiana tomentosiformis, and Nicotiana sylvestris, respectively. For this family, we systematically analyzed phylogeny, gene structure, conserved motifs, gene duplications, cis-elements, subcellular and chromosomal localization, miRNA-target sites, expression patterns with different treatments, and molecular evolution. CCD genes were classified into two subfamilies and nine groups. Gene structures, motifs, and tertiary structures showed similarities within the same groups. Subcellular localization analysis predicted that CCD family genes are cytoplasmic and plastid-localized, which was confirmed experimentally. Evolutionary analysis showed that purifying selection dominated the evolution of these genes. Meanwhile, seven positive sites were identified on the ancestor branch of the tobacco CCD subfamily. Cis-regulatory elements of the CCD promoters were mainly involved in light-responsiveness, hormone treatment, and physiological stress. Different CCD family genes were predominantly expressed separately in roots, flowers, seeds, and leaves and exhibited divergent expression patterns with different hormones (ABA, MeJA, IAA, SA) and abiotic (drought, cold, heat) stresses. This study provides a comprehensive overview of the NtCCD gene family and a foundation for future functional characterization of individual genes.


2021 ◽  
Author(s):  
Zheng Liu ◽  
Jia-Li Liu ◽  
Lin An ◽  
Tao Wu ◽  
Li Yang ◽  
...  

Abstract Background: Canopy architecture is critical in determining the light environment, and subsequently the photosynthetic productivity of fruit crops. Numerous CCT domain-containing genes are crucial for plant adaptive responses to diverse environmental cues. Due to the biological importance of CCT genes, many researchers have focused on their functional characterization. However, little information was available about the CCT genes (PbCCTs) of pear, an important fruit crop.Results: Genome-wide sequence analysis identified 42 putative PbCCTs in the genome of pear (Pyrus bretschneideri Rehd.). Phylogenetic analysis indicated these genes were divided into five subfamilies, namely, COL (14 members), PRR (8 members), ZIM (6 members), TCR1 (6 members) and ASML2 (8 members). Analysis of exon-intron structures and conserved domains provided support for the classification. Genome duplication analysis indicated that segmental duplication events played a crucial role in the expansion of the CCT family in pear, and that the CCT family evolved under the effect of purifying selection. Expression profiles exhibited diverse expression patterns of PbCCTs in various tissues and in response to varying red and blue light. Additionally, transient overexpression of PbPRR2 in Nicotiana benthamiana leaves resulted in inhibition of photosynthetic performance, suggesting that PbPRR2 may be a negative regulator of photosynthesis. Conclusions:This study provides a comprehensive analysis of the CCT gene family in pear and will facilitate further functional investigations of the PbCCTs to uncover their biological roles in light response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2020 ◽  
Vol 10 (4) ◽  
pp. 677-696
Author(s):  
Zhi-Gang Dong ◽  
Hui Liu ◽  
Xiao-Long Wang ◽  
Jun Tang ◽  
Kai-Kai Zhu ◽  
...  

BACKGROUND: Grapevine was one of the most important perennial fruit crops worldwide. Acyl-CoA-binding proteins (ACBPs) in eudicots and monocots show conservation in an acyl-CoA-binding domain (ACB domain) which binds acyl-CoA esters. OBJECTIVE: The information and data provided in the present study contributes to understand the evolutionary processes and potential functions of this gene family in grapevine growth and development, and responses to abiotic stress. METHODS: Using the complete grapevine genome sequences, we investigated the number grapevine ACBP genes, the exon-intron structure, phylogenetic relationships and synteny with the Arabidopsis ACBP gene family. Furthermore, the expression profiles of VvACBP genes based on public microarray data in different tissues, and the expression patterns responding to different exogenous hormones as well as abiotic and biotic stresses were presented. The qRT-PCR was used to verify the microarray data under drought stress treatments. Finally, the leaf relative water content (RWC), leaf chlorophyll content, and enzymatic activities were measured to further examine the tolerance to drought stress in grapevine. RESULTS: The six grapevine ACBPs were identified. Their distribution into various groups differed from Arabidopsis and rice. Synteny analysis demonstrated that several VvACBP genes were found in corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of the respective lineages. Sequence alignment and structural annotation provided an overview of variations that might contribute to functional divergence from Arabidopsis ACBPs. Expressional analyses suggested that both conserved and variant biological functions exist in ACBPs across different species. The expression pattern of these genes were similar in the microarray and qRT-PCR analyses. Gene structure organization and expression characteristics of VvACBPs resembled those of their Arabidopsis orthologous, although species-specific differences also exist. Differential regulation of genes suggested functional diversification among isoforms. The biochemical and physiological data showed the tolerance to drought stress of grapevine. CONCLUSIONS: These findings provided insight into evolution of ACBP gene family in plants and a solid foundation for a deeper understanding of the complex molecular responses of grapevine to stress.


2019 ◽  
Vol 20 (23) ◽  
pp. 5974 ◽  
Author(s):  
Xian Liu ◽  
Zhiguo Liu ◽  
Xinhui Niu ◽  
Qian Xu ◽  
Long Yang

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and its paralogues NPR3 and NPR4, are bona fide salicylic acid (SA) receptors and play critical regulatory roles in plant immunity. However, comprehensive identification and analysis of the NPR1-like gene family had not been conducted so far in bread wheat and its relatives. Here, a total of 17 NPR genes in Triticum aestivum, five NPR genes in Triticum urartu, 12 NPR genes in Triticum dicoccoides, and six NPR genes in Aegilops tauschii were identified using bioinformatics approaches. Protein properties of these putative NPR1-like genes were also described. Phylogenetic analysis showed that the 40 NPR1-like proteins, together with 40 NPR1-related proteins from other plant species, were clustered into three major clades. The TaNPR1-like genes belonging to the same Arabidopsis subfamilies shared similar exon-intron patterns and protein domain compositions, as well as conserved motifs and amino acid residues. The cis-regulatory elements related to SA were identified in the promoter regions of TaNPR1-like genes. The TaNPR1-like genes were intensively mapped on the chromosomes of homoeologous groups 3, 4, and 5, except TaNPR2-D. Chromosomal distribution and collinearity analysis of NPR1-like genes among bread wheat and its relatives revealed that the evolution of this gene family was more conservative following formation of hexaploid wheat. Transcriptome data analysis indicated that TaNPR1-like genes exhibited tissue/organ-specific expression patterns and some members were induced under biotic stress. These findings lay the foundation for further functional characterization of NPR1-like proteins in bread wheat and its relatives.


2020 ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

Abstract Background: Multidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice.Results: In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. In addition, physical and chemical properties of the encoded proteins, subcellular localization, chromosome localization, stress-related cis-elements in abiotic stresses were determined, and a phylogenetic analysis and conserved motif analysis were performed. The rice MATE family can be divided into four subfamilies. It is speculated that members of the rice MATE family have many potential functions, such as the transport and accumulation of flavonoids and alkaloids, the extrusion of plant or exogenous compounds, the regulation of disease resistance and the response to abiotic stress, based on the proteins and cis-acting elements with known functions in the same subfamily. Analysis of gene expression showed that most of the genes were constitutively expressed. Furthermore, eight MATE genes were chosen for qRT-PCR-based analysis and showed differential expression patterns in response to salt and drought stress. Conclusions: Phylogenetic analysis, element prediction, expression data and homology with other species provided strong evidence for functional homology of MATE gene in rice. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10878
Author(s):  
Mengyao Li ◽  
Qi He ◽  
Ying Huang ◽  
Ya Luo ◽  
Yong Zhang ◽  
...  

Sucrose synthase (SUS) plays an important role in sucrose metabolism and plant development. The SUS gene family has been identified in many plants, however, there is no definitive study of SUS gene in Brassica juncea. In this study, 14 SUS family genes were identified and comprehensively analyzed using bioinformatics tools. The analyzed parameters included their family member characteristics, chromosomal locations, gene structures and phylogenetic as well as transcript expression profiles. Phylogenetic analysis revealed that the 14 members could be allocated into three groups: SUS I, SUS II and SUS III. Comparisons of the exon/intron structure of the mustard SUS gene indicated that its structure is highly conserved. The conserved structure is attributed to purification selection during evolution. Expansion of the SUS gene family is associated with fragment and tandem duplications of the mustard SUS gene family. Collinearity analysis among species revealed that the SUS gene family could be lost or mutated to varying degrees after the genome was doubled, or when Brassica rapa and Brassica nigra hybridized to form Brassica juncea. The expression patterns of BjuSUSs vary among different stages of mustard stem swelling. Transcriptomics revealed that the BjuSUS01-04 expression levels were the most elevated. It has been hypothesized that they play an important role in sucrose metabolism during stem development. The expression levels of some BjuSUSs were significantly up-regulated when they were treated with plant hormones. However, when subjected to abiotic stress factors, their expression levels were suppressed. This study establishes SUS gene functions during mustard stem development and stress.


Sign in / Sign up

Export Citation Format

Share Document