scholarly journals Effects of elevated pCO2 and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga Saccharina japonica (Laminariaceae, Phaeophyta)

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8040 ◽  
Author(s):  
Yaoyao Chu ◽  
Yan Liu ◽  
Jingyu Li ◽  
Qingli Gong

Ocean acidification and eutrophication are two major environmental issues affecting kelp mariculture. In this study, the growth, photosynthesis, and biochemical compositions of adult sporophytes of Saccharina japonica were evaluated at different levels of pCO2 (400 and 800 µatm) and nutrients (nutrient-enriched and non-enriched seawater). The relative growth rate (RGR), net photosynthetic rate, and all tested biochemical contents (including chlorophyll (Chl) a, Chl c, soluble carbohydrates, and soluble proteins) were significantly lower at 800 µatm than at 400 µatm pCO2. The RGR and the contents of Chl a and soluble proteins were significantly higher under nutrient-enriched conditions than under non-enriched conditions. Moreover, the negative effects of the elevated pCO2 level on the RGR, net photosynthetic rate, Chl c and the soluble carbohydrates and proteins contents were synergized by the elevated nutrient availability. These results implied that increased pCO2could suppress the growth and biochemical composition of adult sporophytes of S. japonica. The interactive effects of ocean acidification and eutrophication constitute a great threat to the cultivation of S. japonica due to growth inhibition and a reduction in quality.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7048 ◽  
Author(s):  
Furong Yue ◽  
Guang Gao ◽  
Jing Ma ◽  
Hailong Wu ◽  
Xinshu Li ◽  
...  

Photoperiods have an important impact on macroalgae living in the intertidal zone. Ocean acidification also influences the physiology of macroalgae. However, little is known about the interaction between ocean acidification and photoperiod on macroalgae. In this study, a green alga Ulva linza was cultured under three different photoperiods (L: D = 8:16, 12:12, 16:8) and two different CO2 levels (LC, 400 ppm; HC, 1,000 ppm) to investigate their responses. The results showed that relative growth rate of U. linza increased with extended light periods under LC but decreased at HC when exposed to the longest light period of 16 h compared to 12 h. Higher CO2 levels enhanced the relative growth rate at a L: D of 8:16, had no effect at 12:12 but reduced RGR at 16:8. At LC, the L: D of 16:8 significantly stimulated maximum quantum yield (Yield). Higher CO2 levels enhanced Yield at L: D of 12:12 and 8:16, had negative effect at 16:8. Non-photochemical quenching (NPQ) increased with increasing light period. High CO2 levels did not affect respiration rate during shorter light periods but enhanced it at a light period of 16 h. Longer light periods had negative effects on Chl a and Chl b content, and high CO2 level also inhibited the synthesis of these pigments. Our data demonstrate the interactive effects of CO2 and photoperiod on the physiological characteristics of the green tide macroalga Ulva linza and indicate that future ocean acidification may hinder the stimulatory effect of long light periods on growth of Ulva species.


Author(s):  
Omid Sadeghipour

A pot experiment was conducted to investigate the role of methyl jasmonate (MeJA) in alleviation of the adverse effects of salinity on cowpea. Seeds were soaked in 0, 25 and 50 µM MeJA for 20 h and then the seedlings were irrigated with different concentrations of NaCl (0, 50 and 100 mM). Salt stress markedly decreased growth attributes namely shoot length, shoot and root dry weight and leaf area. NaCl stress also significantly reduced chlorophyll value, stomatal conductance, net photosynthetic rate, total soluble proteins and relative water content (RWC). Furthermore, salinity noticeably increased proline and total soluble sugars content. Nonetheless, seeds treatment with MeJA especially 50 µM, improved the growth of cowpea plants by increasing chlorophyll value, stomatal conductance, net photosynthetic rate, total soluble proteins, proline accumulation, total soluble sugars and RWC under salt stress conditions. Thus results indicate that pretreatment of seeds with MeJA could be used as an effective technique for improving cowpea plants tolerance to salt stress.


2019 ◽  
Author(s):  
Zac Wylde ◽  
Foteini Spagopoulou ◽  
Amy K Hooper ◽  
Alexei A Maklakov ◽  
Russell Bonduriansky

Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does, and that breeding age effects can interact over two generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over two generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grandparental ages at breeding on descendants’ mortality rate and lifespan in both matrilines and patrilines. These breeding age effects were not modulated by grandparental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intra-population variation in mortality and longevity.


2009 ◽  
Vol 17 (3) ◽  
pp. 474-478
Author(s):  
Qun-Long LIU ◽  
Chan-Juan NING ◽  
Duo WANG ◽  
Guo-Liang WU ◽  
Hong-Mei ZHANG ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinli Bi ◽  
Huili Zhou

AbstractA well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.


2014 ◽  
Vol 94 ◽  
pp. 1-6 ◽  
Author(s):  
Aki Kato ◽  
Mana Hikami ◽  
Naoki H. Kumagai ◽  
Atsushi Suzuki ◽  
Yukihiro Nojiri ◽  
...  

Plant Science ◽  
2005 ◽  
Vol 169 (3) ◽  
pp. 523-531 ◽  
Author(s):  
K. Mosaleeyanon ◽  
S.M.A. Zobayed ◽  
F. Afreen ◽  
T. Kozai

Sign in / Sign up

Export Citation Format

Share Document