scholarly journals The effect of hepatopancreas homogenate of the Red king crab on HA-based filler

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8579 ◽  
Author(s):  
Tatyana Ponomareva ◽  
Dmitrii Sliadovskii ◽  
Maria Timchenko ◽  
Maxim Molchanov ◽  
Alexander Timchenko ◽  
...  

In this study, several methods were used to analyze the hydrolysis of hyaluronic acid (HA)-based cosmetic fillers by the hepatopancreas homogenate of the Red king crab. The results show that the homogenate and commercially available hyaluronidases have similar hydrolysis activities on the fillers. Atomic force microscopy images reveal that the HA fillers consist mainly of spherical-like particles, which are converted into filamentous structures as a result of hydrolysis by the Red king crab hepatopancreas homogenate. Turbidimetric analysis of the hydrolysis process shows that HA aggregation with acidic albumin exhibits a bell-shaped dependence on reaction time. Analysis of the hydrolysis process by nuclear magnetic resonance shows that HA degradation lasts several days. The maximum rate of the reaction is detected in the 1st h of incubation. The data confirm that the purified homogenate of the Red king crab hepatopancreas exerts hyaluronidase activity on HA-based cosmetic fillers; therefore, it may be considered as a potential therapeutic agent for treating filler complications.

Author(s):  
Tatyana Ponomareva ◽  
Dmitrii Sliadovskii ◽  
Maria Timchenko ◽  
Maxim Molchanov ◽  
Alexander Timchenko ◽  
...  

This study focused on hydrolysis of cosmetic fillers hyaluronic acid (HA) and kinetics of the HA hydrolysis using the homogenate of the red king crab hepatopancreas. Turbidimetric analysis of the reaction mixture revealed a bell-shaped time dependence of aggregation formation. It was shown that the obtained homogenate has the similar activity to the commercially available hyaluronidase. The atomic force microscopy (AFM) examination found that the HA fillers were represented by spherical-like structures. These structures were destroyed under the action of the homogenate of the red king crab hepatopancreas. NMR of the reaction mixture showed that HA degradation lasts for some days, but a maximum rate of the reaction is detected in the first hours of incubation. The preparation with hyaluronidase activity obtained from the red king crab hepatopancreas could be used as potentially safe product for treating filler complications.


Author(s):  
Tatyana Ponomareva ◽  
Dmitrii Sliadovskii ◽  
Maria Timchenko ◽  
Alexander Timchenko ◽  
Evgeny Sogorin

The kinetics of the hydrolysis of hyaluronic acid (HA) of cosmetic fillers using thehomogenate of the red king crab hepatopancreas was studied for the first time. Turbidimetricanalysis of the reaction mixture revealed a bell–shaped time dependence of aggregation formation. The HA fillers were examined by atomic force microscopy (AFM) and it was found that they wererepresented by spherical–like structures. These structures were disrupted under the action of thehomogenate of the red king crab hepatopancreas. It was shown that the prepared homogenate hasthe activity which is similar to that observed in the commercially available hyaluronidase products.The preparation with hyaluronidase activity obtained from the red king crab hepatopancreas couldbe used as potentially safe product for treating filler complications.


2019 ◽  
Vol 3 (11) ◽  
Author(s):  
James R. Chelikowsky ◽  
Dingxin Fan ◽  
Alex J. Lee ◽  
Yuki Sakai

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 823
Author(s):  
Shizheng Yang ◽  
Hongliang Lv ◽  
Likun Ai ◽  
Fangkun Tian ◽  
Silu Yan ◽  
...  

InP layers grown on Si (001) were achieved by the two-step growth method using gas source molecular beam epitaxy. The effects of growth temperature of nucleation layer on InP/Si epitaxial growth were investigated systematically. Cross-section morphology, surface morphology and crystal quality were characterized by scanning electron microscope images, atomic force microscopy images, high-resolution X-ray diffraction (XRD), rocking curves and reciprocal space maps. The InP/Si interface and surface became smoother and the XRD peak intensity was stronger with the nucleation layer grown at 350 °C. The Results show that the growth temperature of InP nucleation layer can significantly affect the growth process of InP film, and the optimal temperature of InP nucleation layer is required to realize a high-quality wafer-level InP layers on Si (001).


Sign in / Sign up

Export Citation Format

Share Document