scholarly journals Heavy metal accumulation potential in pomegranate fruits and leaves grown in roadside orchards

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8990
Author(s):  
Şeyma Demirhan Aydın ◽  
Mine Pakyürek

This study was carried out to determine the possible heavy metal accumulation in fruits and leaves of Zivzik pomegranate (Punica granatum L.) grown in two different roadside orchards located in Pirinçli and Kapılı villages of Siirt province, Turkey. Leaf and fruit samples were collected from trees located at 0, 50, 100 m distances from the main roads. Plant samples were analyzed for cobalt (Co), nickel (Ni), cadmium (Cd), lead (Pb) and chromium (Cr) concentrations. The Co, Ni, Cd, Pb and Cr concentrations of fruit samples collected from Pirinçli village were ranged from 0.082 to 0.238 mg kg−1, from 1.160 to 1.559 mg kg−1, from 0.087 to 0.179 mg kg−1, 0.326 to 0.449 mg kg−1 and 0.606 to 1.054 mg kg−1, respectively. The Co, Ni, Cd, Pb and Cr concentrations of fruit samples from Kapılı village were between 0.085 and 0.137 mg kg−1, 1.042 and 1.123 mg kg−1, 0.037 and 0.076 mg kg−1, 0.277 and 0.520 mg kg−1 and 0.762 and 0.932 mg kg−1, respectively. Heavy metal concentrations of leaf samples from Pirinçli village varied from 0.191 to 0.227 mg Co kg−1, 2.201 to 3.547 mg Ni kg−1, 0.051 to 0.098 mg Cd kg−1, 0.535 to 0.749 mg Pb kg−1 and from 1.444 to 2.017 mg Cr kg−1. Similarly, the heavy metal concentration of leaf samples from Kapılı villages were between 0.213 and 0.217 mg Co kg−1, 2.160 and 2.511 mg Ni kg−1, 0.058 and 0.114 mg Cd kg−1, 0.579 and 0.676 mg Pb kg−1 and 1.688 and 1.518 mg Cr kg−1. The Co, Ni and Cr concentrations in fruit samples collected from 0, 50 and 100 meters to the main road in Pirinçli village were at statistically significant level, while only Ni concentration in leaf samples collected from 0, 50 and 100 meters to the main road was at significant level. In contrast, heavy metal concentrations in fruit and leaf samples collected from 0, 50 and 100 m to the main road in Kapılı village were not statistically significant level.

2018 ◽  
Vol 3 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Mohammad Kazem Souri ◽  
Neda Alipanahi ◽  
Mansoure Hatamian ◽  
Mohammad Ahmadi ◽  
Tsehaye Tesfamariam

Abstract Heavy metal accumulation in vegetable tissues often poses a great risk for human health. In the present study, accumulation of heavy metal in green leafy vegetable crops of coriander, garden cress, lettuce and spinach were evaluated under waste water irrigation in fields located in Kahrizak, on the southern edge of the metropolitan city of Tehran, Iran. Atomic absorption spectrophotometery was used for determination of heavy metal concentrations in leaf tissue. The results showed that heavy metal concentrations in soil and irrigation water were significantly high than allowable levels. Analysis of plant leaf tissue showed that spinach and garden cress accumulated higher concentrations of heavy metals compared to coriander and lettuce plants. Central leaves of lettuce showed the lowest heavy metal concentration compared to outer leaves or leaves of other vegetable crops, and can be the safer product for fresh consumption. The results indicate that the vegetables produced in the region are not suitable for fresh consumption and the agricultural activities should change towards ornamental or industrial crops production.


2012 ◽  
Vol 7 (2) ◽  
pp. 307-317 ◽  
Author(s):  
Dubravka Milić ◽  
Jadranka Luković ◽  
Jordana Ninkov ◽  
Tijana Zeremski-Škorić ◽  
Lana Zorić ◽  
...  

AbstractWe investigated the concentration of Aluminium (Al), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni) and Zinc (Zn) in the root and aboveground organs of four halophyte species (Salicornia europaea, Suaeda maritima, Salsola soda and Halimione portulacoides), as well as in the soil from maritime and inland saline areas. The aim of our research was to evaluate the capability of some halophyte species to absorb different heavy metals and to detect differentiation of heavy metal accumulation within populations from inland and maritime saline areas. Generally, the plant roots had significantly higher concentrations of metals when compared to stems and leaves. Zinc was the only metal with concentrations significantly higher in the leaves than in the root and stem. Populations from maritime saline areas had higher trace root and stem metal concentrations than populations from inland saline areas. Excepting zinc, populations from inland saline areas had higher heavy metal concentrations in the leaves. The factors that affected metal accumulation by halophytes included the percentage of salt in the soil. We also discuss the potential use of these halophytes in phytoremediation.


2018 ◽  
Vol 6 (9) ◽  
pp. 239-245
Author(s):  
M. Sudhakar Reddy ◽  
T. Byragi Reddy ◽  
CH. Venkataramana

Presence of heavy metal concentration in the ground water may cause health problems during intake of through different ways. Present study focused on heavy metal concentration of ground water in the sub-urban areas of Visakhapatnam City, AP, India. Most of heavy metals i.e., Aluminum (Al), Chromium (Cr), Manganese (Mn), Iron (Fe), Nickel (Ni), Zinc (Zn), Arsenic (As), Cadmium (Cd), Mercury (Hg) and Lead (Pb) were analyzed using Inductive Coupled Plasma Mass Spectroscopy (ICP-MS). Mean values of Zn (1.845) > Mn (1.203) > Fe (0.664) > Al (0.334) > Pb (0.245) > Ni (0.082) > Cr (0.066) > As (0.028) > Cd (0.012) > Hg (0.010) results respectively. Results shows that all heavy metal concentrations were exceeded the water quality permissible limit and this area were not suitable for domestic purpose and use before proper treatment.


2021 ◽  
Vol 16 (1) ◽  
pp. 223-236
Author(s):  
Yasin DEMİR ◽  

The reuse of wastewaters for agricultural irrigation is a method used in arid and semi-arid regions. The heavy metal accumulation in soils caused by wastewaters and the heavy metals transported by the waters leaching into the underground from these soils are important environmental issues. The study investigates the effects of Biochar (Bc) and Zeolite (Zt) applications on the heavy metal accumulation in soils (entisol and vertisol) that were irrigated with treated urban wastewater (TWW). The effects of Bc and Zt on the heavy metal concentrations of the leaching water (LW) from the soils were investigated as well. In the study, increasing doses of Bc (1%, 2%, and 4%) and Zt (5%, 10%, and 20%) were mixed into two soil classes of heavy- and fine-textured soils. The mixtures were irrigated with TWW at certain intervals. At the end of the trial, the chromium (Cr), iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), lead (Pb), and cadmium (Cd) contents of the samples collected from the soils and leaching irrigation waters were determined. The results revealed that Bc and Zt caused heavy metal accumulation in both soil classes, while they decreased the heavy metal concentrations of the LW. The adsorbents are commonly used as soil amendments and have been determined to cause heavy metal accumulation in soils but reduced the heavy metal concentrations in waters by serving as filters.


2013 ◽  
Vol 295-298 ◽  
pp. 2364-2370 ◽  
Author(s):  
Hua Bin Xiong ◽  
Ming Hong Chen ◽  
Xin Xiang A ◽  
Meng Sheng Chen ◽  
Yu Cheng Chen ◽  
...  

Heavy metal accumulation is effect normal plant growth, and brings potential human health risk in edible and medicinal plants. Erigeron breviscapus is a famous and important traditional China medicine plant, but research of absorption and accumulation for heavy metal is very limited, however that will help the guarantee of quality and food safety as medicine, and offer cultivation guidance and selection of main medicinal parts. The results showed that in pollution-free soil four heavy metals (lead, chromium, cadmium and cuprum) are low concentration in Erigeron breviscapus, but with an increase of heavy metal concentration in soil its amount showed a rising trend in different organs. Lead and chromium enriched mainly by plant root, but cadmium and cuprum easily transfer into above-ground parts because of strongly translocation ability themselves. Therefore cultivate of medicine materials must select pollution-free soil to avoid direct and indirect danger from heavy metal pollution.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 563 ◽  
Author(s):  
Zsuzsanna Szabó ◽  
Botond Buró ◽  
József Szabó ◽  
Csaba Albert Tóth ◽  
Edina Baranyai ◽  
...  

The spatial complexity of floodplains is a function of several processes: hydrodynamics, flow direction, sediment transportation, and land use. Sediments can bind toxic elements, and as there are several pollution sources, the risk of heavy metal accumulation on the floodplains is high. We aimed to determine whether fluvial forms have a role in metal accumulations. Topsoil samples were taken from point bars and swales in the floodplain of the Tisza River, North-East Hungary. Soil properties and metal concentrations were determined, and correlation and hypothesis testing were applied. The results showed that fluvial forms are important drivers of horizontal metal patterns: there were significant differences (p < 0.05) between point bars and swales regarding Fe, K, Mg, Mn, Cr, Cu, Ni, Pb, and Zn. Vertical distribution also differed significantly by fluvial forms: swales had higher metal concentrations in all layers. General Linear Models had different results for macro and micro elements: macro element concentrations were determined by the organic matter, while for micro elements the clay content and the forms were significant explanatory variables. These findings are important for land managers and farmers because heavy metal concentration has a direct impact on living organisms, and the risk of bioaccumulation can be high on floodplains.


2019 ◽  
Vol 21 (1) ◽  
pp. 69-82
Author(s):  
Iyabode Olusola Taiwo ◽  
Olaniyi Alaba Olopade ◽  
Nathanael Akinsafe Bamidele

Abstract This research was undertaken to find out the levels of five heavy metals (Cu, Fe, Mn, Pb, and Zn) in the muscles of eight fish species from Epe Lagoon. The levels of heavy metals were determined by atomic absorption spectrophotometry after digestion of the samples using Kjldahl heating digester. The heavy metal concentrations among the fish species were statistically dissimilar (P < 0.5). The heavy metals of Pb, Fe, and Mn were above the FAO/WHO agreeable limits for human consumption.


2019 ◽  
Vol 8 (2) ◽  
pp. 61
Author(s):  
Indah Syahiddah Fitroh ◽  
Petrus Subardjo ◽  
Lilik Maslukah

Kegiatan industri di Perairan Muara Sungai Tiram, Marunda, Jakarta Utara, akan berdampak terhadap konsentrasi logam berat di Perairan. Sedimen merupakan tempat akumulasinya logam tersebut dan pada suatu saat akan dapat menjadi sumber bagi kolom perairan diatasnya. Tujuan penelitian ini adalah untuk mengetahui konsentrasi logam berat pada sedimen dasar dan mengetahui korelasinya terhadap ukuran butir serta dan bahan organik. Analisa logam berat diawali dengan proses destruksi menggunakan aquaregia dan supernatannya di baca nilai absorbasninya menggunakan Atomic Absorption Spectrophotometer (AAS). Untuk melihat hubungan parameter logam berat terhadap ukuran butir dan bahan organik, menngunakan analisis korelasi Pearson. Berdasarkan penelitian tersebut diperoleh nilai konsentrasi logam berat dengan kisaran 20,19–55,68 ppm. Konsentrasi logam berat memiliki korelasi positif terhadap fraksi silt dan clay.  Distribusi logam berat di lokasi penelitian berasosiasi kuat terhadap fraksi ukuran butir halus dan bahan organik, melalui proses adsorpsi. The waters of the Muara Sungai Tiram, Marunda, North Jakarta, are areas that are surrounded by very dense industrial activities. The existence of these activities has an impact on the concentration of heavy metals in basic sediments in these waters. The purpose of this study was to determine the concentration of heavy metals in basic sediments and determine the correlation between the concentration of heavy metals with grain size on the base sediment in the liquid and the correlation between the concentration of heavy metals with organic matter. Analysis of heavy metal concentrations was carried out using the acid destruction method, then the concentration was read using the Atomic Absorption Spectrophotometer (AAS), and processed into a heavy metal concentration map using Arcgis 10.3. Based on these studies the value of heavy metal concentrations obtained in the range of 20.19 - 55.681 ppm. Heavy metal concentrations have a positive correlation with the mud and organic matter fractions with r values of 0.68 and 0.10, respectively. The distribution of heavy metals in this study is strongly associated with the fine grain size fraction and organic matter, through the adsorption process


2019 ◽  
Vol 7 (1) ◽  
pp. 233
Author(s):  
. Nasprianto ◽  
Desy M.H. Mantiri ◽  
Grevo S Gerung

Heavy metals in the water and sediment, in spite of low concentration, will not degrade and even can be absorbed  and biologically accumulated by marine algae. This study was aimed to analyze the heavy metal concentrations in the seawater, sediment, and  Halimeda opuntia in Totok Bay and Blongko waters. Samples were analyzed using  APHA method  and USEPA method in Water Laboratory Nusantara (WLN). Results showed that the heavy metal concentration in Totok Bay waters was  <0.0001 ppm for Cadmium (Cd),  <0.001 ppm for lead (Pb),  <0.005 ppm for Zinc (Zn), and  <0.00005 ppm for mercury (Hg), respectively, while Blongko waters had Cd concentration of <0.0001 ppm, Pb  <0.001 ppm, Zn <0,005 ppm, Hg <0.00005 ppm. Heavy metal concentration in the sediment of Totok Bay was 4.71 ppm for Cd, 10.7 ppm for lead, 58 ppm for Zn, and 2.68 ppm for Hg, respectively, while in Blongko, the heavy metal concentration was 0,03 ppm for Cd,  0.4 ppm for Pb,  <1 ppm for Zn, and <0.05 ppm for Hg, respectively. The heavy metal concentration in H. opuntia of  Totok Bay was 0.18 ppm for Cd,  2.2 ppm for Pb, 5.10 ppm for Zn, 0.74 ppm for Hg, while H. opuntia of Blongko contained 0.02 ppm of Cd,  0.2 ppm of lead,  <0.5 ppm of  Zn, and  0.009 ppm of Hg, respectively.Keywords : Cadmium (Cd); Lead (Pb); Zink (Zn); Mercury (Hg); Halimeda opuntia; Totok Bay; Blongko waters.ABSTRAKLogam berat dalam perairan dan sedimen meskipun memiliki kadar yang relatif rendah namun tidak akan mengalami degradasi bahkan dapat diabsorbsi dan terakumulasi secara biologis oleh alga laut. Tujuan penelitian adalah menganalisis kandungan logam berat dalam air laut, sedimen dan Halimeda opuntia di perairan Teluk Totok dan Perairan Blongko. Analisis sampel mengacu metode APHA, (2012) dan USEPA, (2005) yang dianalisis di Water Laboratory Nusantara (WLN). Hasil analisis konsentrasi logam berat dalam air laut di perairan Teluk Totok yaitu kadmium (Cd) <0,0001 ppm, timbal (Pb) <0,001 ppm, seng (Zn) <0,005 ppm dan merkuri (Hg) <0,00005 ppm sedangkan dari perairan Blongko yaitu konsentrasi kadmium (Cd) <0,0001 ppm, timbal (Pb) <0,001 ppm, seng (Zn) <0,005 ppm dan merkuri (Hg) <0,00005 ppm. Konsentrasi logam berat pada sedimen di perairan Teluk Totok yaitu kadmium (Cd) 4,71 ppm, timbal (Pb) 10,7 ppm, seng (Zn) 58 ppm dan merkuri (Hg) 2,68 ppm dan perairan Blongko dengan konsentrasi kadmium (Cd) 0,03 ppm, timbal (Pb) 0,4 ppm, seng (Zn) <1 ppm dan merkuri (Hg) <0,05 ppm. Sedangkan konsentrasi logam berat pada H. opuntia di perairan Teluk Totok dengan konsentrasi kadmium (Cd) 0,18 ppm, timbal (Pb) 2,2 ppm, seng (Zn) 5,10 ppm dan merkuri (Hg) 0,74 ppm dan perairan Blongko dengan konsentrasi kadmium (Cd) 0,02 ppm, timbal (Pb) 0,2, seng (Zn) <0,5 ppm dan merkuri (Hg) 0,009 ppm.Kata-kata kunci : Kadmium (Cd); Timbal (Pb); Seng (Zn); Merkuri (Hg); Halimeda opuntia; Teluk Totok; Perairan Blongko.


Sign in / Sign up

Export Citation Format

Share Document