scholarly journals Utilization of brewery wastes in food industry

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9427 ◽  
Author(s):  
Kamila Rachwał ◽  
Adam Waśko ◽  
Klaudia Gustaw ◽  
Magdalena Polak-Berecka

Beer is the most popular low-alcohol beverage consumed in large amounts in many countries each year. The brewing industry is an important global business with huge annual revenues. It is profitable and important for the economies of many countries around the world. The brewing process involves several steps, which lead to fermentation of sugars contained in malt and conversion thereof into alcohol and carbon dioxide by yeasts. Beer brewing generates substantial amounts of by-products. The three main brewing industry wastes include brewer’s spent grain, hot trub, and residual brewer’s yeast. Proper management of these wastes may bring economical benefits and help to protect the environment from pollution caused by their excessive accumulation. The disposal of these wastes is cumbersome for the producers, however they are suitable for reuse in the food industry. Given their composition, they can serve as a low-cost and highly nutritional source of feed and food additives. They also have a potential to be a cheap material for extraction of compounds valuable for the food industry and a component of media used in biotechnological processes aimed at production of compounds and enzymes relevant for the food industry.

2008 ◽  
Vol 71 (8) ◽  
pp. 1724-1733 ◽  
Author(s):  
SUSAN ROUSE ◽  
DOUWE VAN SINDEREN

Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1467 ◽  
Author(s):  
José Ignacio Arranz ◽  
María Teresa Miranda ◽  
Francisco José Sepúlveda ◽  
Irene Montero ◽  
Carmen Victoria Rojas

Brewing industry generates a main residue, brewers’ spent grain (BSG), which has good properties both for use in animal consumption and for thermal use, but contains a very high content of moisture (20–25% dry matter content), so that its elimination or treatment should be immediate, since it can cause degeneration problems of the product. Currently, brewers often supply this material at low cost for use as livestock feed. This solution is not efficiently carried out without reporting too much benefit to the brewers more than to eliminate waste from their facilities. However, BSG is a raw material of interest for application in different areas due to its low price, availability throughout the year and a valuable chemical composition, so it seems necessary to look for an alternative use to give value to these characteristics. In this paper a drying study is carried out in order to establish the foundations for its energy use by thermal of BSG. BSG has been used from a craft brewery located at Badajoz, Spain. Drying analysis was carried out for various temperatures and inlet air flow by means a convective dryer. The properties studied show that BSG can be used for thermal utilization in large installations, being necessary heat drying processes as a pretreatment in order to obtain a biofuel with acceptable efficiency.


2017 ◽  
Vol 899 ◽  
pp. 107-112
Author(s):  
Beatriz Cristina Silvério ◽  
Pedro Ivo Brandão e Melo Franco ◽  
Carolina Moreno de Freitas ◽  
Kássia Graciele dos Santos ◽  
Nelson Roberto Antoniosi Filho

Locally available malt waste or brewers' spent grain, a by-product of brewing industry, was found to be a low cost and promising biomass for pyrolysis. A kinetic studied of pyrolysis of malt waste was investigated by non-isothermal thermogravimetric analyses (TG-DTG), applying slow heating rates, 10, 15, 30 and 50 K/min, and well-defined conditions. Activation energies and Arrhenius exponential factors were inferred by different estimation methods: Kissinger, Ozawa, Starink, K-A-S and. The methods presented energy activation values of 214 - 238.23 kJ/mol. The Literature studies found activations energies values similar to those found for sugarcane bagasse pyrolysis and other types of biomasses with predominance of hemicelluloses, cellulose and lignin, respectively.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Johann F. Osma ◽  
José L. Toca-Herrera ◽  
Susana Rodríguez-Couto

Laccases are an interesting group of multi copper enzymes, which have received much attention of researchers in the last decades due to their ability to oxidise both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. This makes these biocatalysts very useful for their application in several biotechnological processes, including the food industry. Thus, laccases hold great potential as food additives in food and beverage processing. Being energy-saving and biodegradable, laccase-based biocatalysts fit well with the development of highly efficient, sustainable, and eco-friendly industries.


2021 ◽  
Author(s):  
Getu Kitaw Degefu ◽  
Mulisa Faji ◽  
Geberemariyam Terefe

Abstract Brewers’ spent grain (BSG) is the amplest by-product of the brewing process. Fresh BSG is currently used as low-cost cattle feed due to its microbiological instability and high perishability. While recent research has looked the effects of storage time and temperature on the characteristics of wet brewers grains (WBG) as ruminant feeds. Three storage temperatures (15°C, 20°C, and 25°C) and periods (2, 4 and 6 days) were arranged in a 3×3 factorial design. Surface spoilage was not apparent at 15 °C throughout the storage periods. Deterioration was not also observed at 20 °C until the fourth day of storage where slight mold growth was apparent. Extensive mold growth was detected late in the sixth day at 20° C and continued manifestations up until the last day of storage at 25°C. Changes in major nutrients, DM losses, and yeast and mold colony count were significantly affected by the interaction of storage temperatures and durations (P<0.05). Except for samples stored at 15° C, nutrients contents decreased concomitantly (exceptions are ADF, lignin, and loss in DM) with prolonged storage times (p<0.05) and increasing temperatures (p<0.05). Contrast analysis indicated that it would be safe to store under aerobic storage conditions and feed the WBG for dairy cattle.


Author(s):  
Marcela Bernal-Ruiz ◽  
Alejandro Correa-Lozano ◽  
Laura Gomez-Sánchez ◽  
Balkys Quevedo-Hidalgo ◽  
Lilia Carolina Rojas-Pérez ◽  
...  

Brewer’s spent grain (BSG) is the main solid waste from the brewing process. It is recognized as a valuable resource for biobased industries because of its composition, high availability, and low cost. The objective of this study was to employ BSG as a substrate to produce the enzymes endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase, as well as reducing sugars using Penicillium sp. HC1. For enzyme production, we evaluated BSG submerged fermentation at different concentrations (1%, 3%, and 5%, w/v) and two sources of nitrogen (yeast extract and ammonium sulfate) on different days (6, 10, and 12) in a 100 mL Erlenmeyer flask. The highest enzyme activity was obtained after 10 days. The enzyme extract obtained using 3% BSG (w/v) and 5 g L-1 of ammonium sulfate showed the highest xylanase activity (25013 ± 1075 U L-1). Using BSG 5% (w/v) without nitrogen supplementation, the endoglucanase activity was 909.7±14.2 U L-1 while underthe same conditions but using BSG 3% (w/v), the β-glucosidase and cellobiohydrolase activity was 3268.6 ±229.9 U L-1 and 103.15±8.1 U L-1, respectively. Maximum reducing sugar concentrations using an enzyme dosage of 1000 U g-1 of xylanase were: 2.7 g L-1 xylose, 1.7 g L-1 arabinose, and 3.3 g L-1 glucose after 6 h of hydrolysis. Result s demonstrated it is possible to produce enzymes and reducing sugars using Penicillium sp. HC1 and BSG as substrate and BSG grinding only as pretreatment. 


2021 ◽  
Vol 67 (1) ◽  
pp. 3339-3350
Author(s):  
Vivien Nagy ◽  
Gerda Diósi

The utilization of food industry byproducts is one of today’s important environmental and economic tasks. Byproducts that form during food production are typically used for feed purposes, but in many cases these materials can also be used in the production of human foods. The brewer’s spent grain left behind after brewing beer is a byproduct with favorable nutrition parameters, with low sugar and high fiber and protein contents. The main objective of our experiments was the reintroduction of brewer’s spent grain into the food industry, with a focus on innovation and sustainable development, by utilizing it in commercially available bakery products (salty medallions / wafers) formulated and regulated in the Hungarian Food Codex. Brewer’s spent grain consists of vegetable proteins and fibers (inactive malt), which may improve the compositional characteristics when preparing bakery products. In the course of our research, medallions enriched with brewer’s spent grain were prepared, of the beneficial parameters of which its high dietary fiber content should be highlighted, which can contribute to the realization of a health-conscious diet for consumers. A diet rich in dietary fiber, combined with an adequate amount of exercise, can reduce the risk of developing certain diseases (e.g., cancer and cardiovascular diseases).


2010 ◽  
Vol 62 (9) ◽  
pp. 2157-2166 ◽  
Author(s):  
Liyuan Chai ◽  
Qingwei Wang ◽  
Qingzhu Li ◽  
Zhihui Yang ◽  
Yunyan Wang

Spent grain, the low-cost and abundant biomass produced in the brewing industry, was functionalized with thiol groups to be used as an adsorbent for Hg(II) removal from acidic aqueous solution. The adsorbents were characterized by the energy-dispersive X-ray analysis (EDAX) and Fourier transform infrared (FTIR) spectroscopy. Optimum pH for Hg(II) adsorption onto the thiol-functionalized spent grain (TFSG) was 2.0. The equilibrium and kinetics of the adsorption of Hg(II) onto TFSG from acidic aqueous solution were investigated. From the Langmuir isotherm model the maximum adsorption capacity of TFSG for Hg(II) was found to be 221.73 mg g−1, which was higher than that of most various adsorbents reported in literature. Moreover, the adsorption of Hg(II) onto TFSG followed pseudo-second-order kinetic model.


2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


Sign in / Sign up

Export Citation Format

Share Document