Relationships among Quantitative Traits and Seed Yield in Vetch (Vicia sativa L., Vicia villosa Roth.)

Author(s):  
Natalia Georgieva ◽  
Ivelina Nikolova ◽  
Valentin Kosev
Author(s):  
Vijay Pratap ◽  
Vijay Sharma ◽  
Kamaluddin . ◽  
Gaurav Shukla

Background: Assessment of genetic variability and inter-relationship between the characters can be used in the breeding programme to evolve new varieties with wide genetic diversity to maximize the yield potential in crop improvement programmes. Eighty-four field pea genotypes were evaluated in an augmented block design for thirteen quantitative traits to study variance components, heritability, genetic advance and inter-relationship between the yield and yield contributing traits. Methods: The extent of phenotypic and genotypic variation that exist in a character was calculated by the formula suggested by Burton and de Vane (1953). Heritability in broad sense and genetic advance as per cent of mean for each character was computed using the formula suggested by Hanson et al. (1956) and Johnson et al. (1955), respectively. Correlation coefficient was calculated by method suggested by Searle (1961) and path coefficient analysis done as per method of Wright (1921) and elaborated by Dewey and Lu (1959).Result: Significant differences observed among the genotypes tested for the yield characters indicated the presence of variability. High heritability coupled with high genetic advance as percent of mean was observed for the traits viz., plant height, effective pods plant-1, harvest index and seed yield plant-1 were governed by additive gene effects which will aid in effective selection. Correlation coefficient analysis revealed that seed yield plant-1 had highly significant and positive correlation with biological yield plant-1, effective pods plant-1, harvest index, seeds pods-1 and effective nodes plant-1, indicating that these traits are strongly associated with seed yield in field pea. Path coefficient analysis identified biological yield plant-1 followed by harvest index, seed pod-1, effective nodes plant-1, 100-seed weight and day to 50% flowering as highly desirable components with great direct effects on seed yield. 


Author(s):  
Rakesh Singh ◽  
J. L. Salam Mahendra

The experiment was performed at Research cum Instructional Farm, Shaheed Gundadhoor College of Agriculture and Research Station, Kumhrawand, Jagdalpur, Chhattisgarh. A total of 56germplasm lines and 1 check variety of horsegram were assessed for 10 quantitative traits during kharif2018.Genotypes were grouped into eight clusters. Clusters VI had maximum intra cluster distance while inter cluster distance was maximum between cluster VI and cluster VIII. Cluster III and cluster VIII had highest mean values for seed yield per plant characters. The characters viz., pods per plant followed by days to maturity and seed yield per plant were main contribution to total divergence. Based on the result genotypes belonging to clusters II, III and VIII are recommended for hybridization, as these genotypes showed good performance for seed yield and belong to the diverse clusters.


Author(s):  
S. Bhuvaneswari ◽  
Susheel Kumar Sharma ◽  
P. Punitha ◽  
K. S. Shashidhar ◽  
K. L. Naveenkumar ◽  
...  

An investigation was carried out to evaluate 51 diverse field pea genotypes at Langol Research farm, ICAR, RC, NEH region, Manipur centre for nine yield related quantitative traits and four morphological qualitative traits for practical field pea improvement in Manipur. The combined analysis of variance of genotypes for all the nine traits was found to be significant. The amount of variability in one variable as a linear function of another variable was also measured through phenotypic and genotypic correlation among nine quantitative traits. The pod number per plant, seed number per pod and 100 seed weight showed significant positive correlation with seed yield per plant both at phenotypic and genotypic levels. Multivariate analysis using principal component analysis (PCA) indicated that three principal components (PCs) accounted for > 75% of the total variation. The genotypes were grouped into seven clusters using distance based Agglomerative “Average linkage” method. Three genotypes IPF-5-19, EC-8495, HUDP-15 belonging to cluster II and DDR-30, early maturing variety belonging to Cluster VI were found promising in terms of seed yield for the region.


Author(s):  
Renuka Shivwanshi ◽  
Anita Babbar

A total of 434 germplasm lines of chickpea were assessed for 13 quantitative traits during rabi 2015-16 at JNKVV, Jabalpur. Genotypes were grouped into fourteen clusters. Clusters II and cluster XIV and cluster XII and cluster XIV, had maximum inter cluster distance. The characters viz.,effective pods per plant followed by biological yield per plant, plant height and 100-seed weight were main contribution to total divergence. Cluster XIV and cluster XIII had highest mean values for maximum number of characters. Based on the result IC 83812, EC 198729, EC 490027, IC 53245, IC 83827and IC 83889 are recommended for hybridization, as these genotypes showed good per se performance for seed yield and belong to the highly diverse clusters.


1996 ◽  
Vol 126 (4) ◽  
pp. 421-427 ◽  
Author(s):  
S. Christiansen ◽  
A. M. Abd El Moneim ◽  
P. S. Cocks ◽  
M. Singh

SUMMARYYields and hardseed breakdown of underground and aerial seeds in subterranean vetch (Vicia sativa ssp. amphicarpa) and lathyrus (Lathyrus ciliolatus) and aerial seeds of Medicago rigidula and M. noeana were compared at Tel Hadya, near Aleppo, in north Syria between 1990 and 1992. Underground and aerial seed and straw (mature herbage) yields were measured at maturity in the first spring, and hardseed breakdown over the following summer, autumn and winter. Regenerating herbage production was measured in the second spring.In the establishment year (292 mm rainfall) the medics produced twice as much straw as the amphicarpic species. In contrast, seed yields were less than half: M. rigidula and M. noeana produced 412 and 110 kg/ha respectively, while subterranean vetch and lathyrus produced 1174 and 736 kg/ha. More than 95 % of the total seed yield of the amphicarpic legumes was underground. Underground seeds of the amphicarpic legumes were larger than aerial seeds, and almost 10 times as large as the medic seeds.Seeds of all species were > 90% hard when newly set in summer. At the first seasonal rains > 95% of underground seed had softened, compared with 5 and 40% of the aerial seeds of vetch and lathyrus respectively. The medics remained > 90% hardseeded. In laboratory tests, embryo dormancy was observed in all species prior to the onset of first seasonal rains. For the amphicarpic legumes, but not for the medics, embryo dormancy persisted into winter. In the field, and after all germination events, 900–1430 seeds/m2 of subterranean vetch seed remained in the soil. This was considerably more than expected, based on the low levels of hardseededness and embryo dormancy observed in the laboratory. The results suggest that dormant seeds of the amphicarpic legumes need light to germinate.In the second year (353 mm rainfall), regenerating M. rigidula produced 5·3 t/ha compared with 3·4 t/ha by the best subterranean vetch from approximately equal numbers of seedlings. The amphicarpic legumes germinated later and over a more extended period than the medics, indicating that they could become weeds in a cereal/pasture rotation. However, the results suggest that in drier areas or in drier years the vetches will compare favourably with the medics in most respects. Clearly, subterranean vetch and lathyrus have great potential for pasture improvement in dry areas.


2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


Author(s):  
Jakkam Mahipal Reddy ◽  
Gabrial M. Lal ◽  
Velugoti Priyanka Reddy ◽  
Subhadra Pattanayak ◽  
V. Rohith Guptha ◽  
...  

A trail was conducted during rabi 2020 to study genetic diversity among 36 favorable genotypes of chickpea (Cicer arietinum L.) with help of Mahalanobis D2 statistics. On the basis of D2 values, 36 genotypes were arranged into 5 clusters. The intra cluster distances were lower than inter-cluster distances, specifying that genotypes comprised within a cluster shows tendency to vary less apart from each other. Out of thirteen characteristics considered, secondary branches per plant, number of pods per plant, seed yield per plant, harvest index and plant height, contributed very much in relation to genetic divergence. Wide range of variability was noticed for quantitative traits. This suggested that the selection based on these characteristics would be valuable in improving the grain yield. Therefore, a direct selection based on seed yield and component traits may be practiced to choose superior genotypes which could be utilized in breeding program for the development of high yielding chickpea genotypes.


Sign in / Sign up

Export Citation Format

Share Document