scholarly journals Characteristics of Bituminous Concrete Mixtures Utilizing Copper Slag

2021 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Chavan Ravishankar ◽  
M.S. Nagakumar ◽  
H.K. Krishnegowda ◽  
Abhilash R Prasad

Study work on the effectiveness and use of Industrial by-products (IBP) in flexible pavements is restricted. Several factors however need to be analyzed specifically before a greater proportion of industrial by-products can be used in bituminous concrete mixtures with a high level of confidence. Effects of copper slag on volumetric and strength parameters such as Marshall Parameters, static tensile properties, and moisture resistivity of bituminous concrete mixtures using copper slag as mineral fillers need to be examined and thoroughly analyzed. Quantitative analyses of the elements and the morphology of the copper slag have been studied by Energy Dispersive X-ray Analyzer (EDX) and Scanning Electron Microscope (SEM). The use of copper slag as a mineral filler in bituminous concrete grade-2 mixtures showed an increase in stability, indirect tensile strength, and moisture resistance compared to traditional mixtures. Keywords— Industrial by-products (IBP), Indirect Tensile Strength, Moisture resistivity, SEM, EDX

2019 ◽  
Vol 803 ◽  
pp. 216-221
Author(s):  
Khwairakpam Lakshman Singh ◽  
Debjani Panda

The present study shows an investigation on improvement of bituminous binder and its mixes using modified binders with different percentage (1% to 7%) of domestic waste polyethylene (PE).The temperature susceptibility and penetration index (PI) of the modified binders were calculated. It is observed that PI value of modified binder is found higher than unmodified binder. The strength characteristics in terms of Marshall Stability and moisture susceptibility expressed in terms of indirect tensile strength ratio (ITSR) of bituminous concrete were determined in the present study. Marshall stability of the bituminous mixture containing 3% PE increased by 34.2% as compare to mixture containing unmodified binder. The addition of 3% PE to neat bitumen, results in an increase of 20% in indirect tensile strength ratio. Using PE modified binder in bituminous concrete mixes increases stability, indirect tensile strength which turn in provide better resistance against permanent deformation.


2021 ◽  
Author(s):  
Piotr Zieliński

The effect of using reclaimed asphalt pavements (RAP) to asphalt concrete mixtures besides their utilization is to reduce the amount of the new bituminous binder and aggregate added to hot mix asphalt. This publication presents studies on asphalt mixtures with an increased up to 40% amount of RAP additive with the simultaneous use of 2 types of added bitumen, i.e. 35/50 and PMB 25/55-60. The aim of the paper is the evaluation of the basic mixture properties in a wide range of operating temperatures, as a part of the AC testing at high temperatures, the resistance to rutting at 60° C and indirect tensile strength at 40° C. The assessment of properties at intermediate operating temperatures is based on indirect tensile tests, including: elastic stiffness modulus at 5° C, 15° C and 30° C and static strength at 25° C. The low temperature properties have been tested in water and frost resistance tests by indirect tensile strength ratio. The results of the study were subjected to the analysis of the statistical significance of differences, which showed an improvement in the resistance of AC with the addition of RAP to the formation of permanent deformations and an increase in the stiffness modulus as well as indirect tensile strength. There was no adverse effect of the RAP additive on asphalt mixtures resistance to water and frost action.


2020 ◽  
Vol 12 (10) ◽  
pp. 4243 ◽  
Author(s):  
Eduardo-Javier Elizondo-Martinez ◽  
Piergiorgio Tataranni ◽  
Jorge Rodriguez-Hernandez ◽  
Daniel Castro-Fresno

Alternative materials to replace cement in pavements have recently been widely studied with the purpose of decreasing the environmental impacts that the construction industry generates. In this context, the implementation of sustainable urban drainage systems has grown, especially with porous pavements, with the intention to reduce water and environmental impacts. In the present investigation, the addition of alternative materials to minimize the use of cement in porous concrete pavements is evaluated. Starting from a partial substitution of Portland cement with metakaolin, experimental geopolymer concretes were produced with metakaolin and waste basalt powder according to several dosages. Two sets of mixtures were analyzed to evaluate the Porous Concrete Design (PCD) methodology for porous concrete mixtures with alternative materials. A deep analysis was proposed for the evaluation of the mechanical and volumetric properties of the mixtures. Results demonstrated that replacing 5% of cement with metakaolin can increase both permeability and indirect tensile strength. Geopolymer mixtures can achieve permeability significantly higher than the traditional porous concrete, but this decreases their indirect tensile strength. However, considering the promising results, an adjustment in the mix design of the geopolymer mixtures could increase their mechanical properties without negatively affecting the porosity, making these materials a suitable alternative to traditional porous cement concrete, and a solution to be used in urban pavements.


2018 ◽  
Vol 7 (1) ◽  
pp. 93-106
Author(s):  
Anurag V. Tiwari ◽  
Y R M Rao

Abstract The rutting and cracking of pavements has become very common problem in India. Also the quantity of plastic waste has significantly increased in the recent year due to industrialization and population growth. Improper disposal of these plastic wastes has caused various environmental problems, hence the alternative use of waste plastic in bituminous concrete for road construction has been encouraged by the community. In the present study the Indirect Tensile Strength Test has been carried out on Marshall Samples confirming to ASTM D6931-12. Three different processes (dry process, wet process and combined process) of mixing of waste plastic were used during experimentation. It was found that the indirect tensile strength (ITS) and tensile strength ratio (TSR) of sample significantly increase up to 8%, 6% and 12% for dry process, wet process and combined process respectively for LDPE and HDPE type of waste plastic.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 370-384
Author(s):  
Hossein Noorvand ◽  
Kamil Kaloush ◽  
Jose Medina ◽  
Shane Underwood

Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the Phoenix, Arizona area indicated an interesting pattern of transverse/reflective cracking. These ARFC courses were placed several years ago on existing jointed plain concrete pavements for highway noise mitigation. Over the years, the shoulders had very noticeable and extensive cracking over the joints; however, the driving lanes of the pavement showed less cracking formation in severity and extent. The issue with this phenomenon is that widely adopted theories that stem from continuum mechanics of materials and layered mechanics of pavement systems cannot directly explain this phenomenon. One hypothesis could be that traffic loads continually manipulate the pavement over time, which causes some maltenes (oils and resins) compounds absorbed in the crumb rubber particles to migrate out leading to rejuvenation of the mastic in the asphalt mixture. To investigate the validity of such a hypothesis, an experimental laboratory testing was undertaken to condition samples with and without dynamic loads at high temperatures. This was followed by creep compliance and indirect tensile strength testing. The results showed the higher creep for samples aged with dynamic loading compared to those aged without loading. Higher creep compliance was attributed to higher flexibility of samples due to the rejuvenation of the maltenes. This was also supported by the higher fracture energy results obtained for samples conditioned with dynamic loading from indirect tensile strength testing.


2012 ◽  
Vol 174-177 ◽  
pp. 82-90 ◽  
Author(s):  
Ju Nan Shen ◽  
Zhao Xing Xie ◽  
Fei Peng Xiao ◽  
Wen Zhong Fan

The objective of this study was to evaluate the effect of nano-sized hydrated lime on the moisture susceptibility of the hot mix asphalt (HMA) mixtures in terms of three methodologies to introduce into the mixtures. The experimental design for this study included the utilizations of one binder source (PG 64-22), three aggregate sources and three different methods introducing the lime. A total of 12 types of HMA mixtures and 72 specimens were fabricated and tested in this study. The performed properties include indirect tensile strength (ITS), tensile strength ratio (TSR), flow, and toughness. The results indicated that the nano-sized lime exhibits better moisture resistance. Introducing process of the nano-sized lime will produce difference in moisture susceptibility.


2013 ◽  
Vol 6 (6) ◽  
pp. 854-874 ◽  
Author(s):  
J. T. Balbo

Indirect tensile strength is not usually used for concrete mixtures proportioning and its technological control; flexural strength tests under third point loads arrangement are the pattern for such goals. Indeed, neither of such tests have the capability to set up the actual strength of a concrete slab since its response is under plane stress state. A critical review of the basic concepts on both kinds of tests allows foreseeing its limitations as well as how to overcome such shortcomings. At last correlations between the two kinds of tensile strength are presented considering dry and plastic concretes typically applied on paving, corroborating to former results achieved for plastic concretes.


Sign in / Sign up

Export Citation Format

Share Document