scholarly journals A review on characteristics of pervious concrete using recycled aggregate

2021 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Aaliya Navaz ◽  
Anju Paul

Pervious concrete is a mixture of cement, coarse aggregate mixed with water. The absence of fine aggregate helps increase the voids and water can pass through these gaps and reaches to ground level. The use of recycled coarse aggregates from construction and demolition is a sustainable solution with many environmental benefits and also reduces the number of virgin aggregates to be created, hence reducing the extraction of natural resources. This paper reviews the research developments of pervious concrete by replacing natural aggregates with different percentages of recycled coarse aggregate. The papers under consideration of review have conducted to identify various properties of pervious concrete such as mechanical and hydrological properties. Keywords— pervious concrete, compressive strength, permeability

2011 ◽  
Vol 368-373 ◽  
pp. 2185-2188
Author(s):  
Ping Hua Zhu ◽  
Xin Jie Wang ◽  
Jin Cai Feng

The properties of recycled coarsee aggregates from repeatedly recycling waste concrete were determined. In this study, five series of concrete mixtures using coarse and fine natural aggregates were prepared, which have the same objective slump value from 35mm to 50mm and different compressive strengths ranging from 25MPa to 60 MPa. These five concretes were crushed, sieved, washed with water, hot treatmented at 300°C before they were used as recycled aggregates. After that, recycled aggregate concrete (RAC) was produced with an objectively compressive strength of 30MPa, in which the recycled coarse aggregate was used as 30%, 70% and 90% replacements of natural coarse aggregate and recycled fine aggregate as 10%, 20%, and 30% replacements of natural fine aggregate. After that, these recycled concretes were used as second recycled aggregates to produce RAC with the same objectively compressive strength of 30MPa. The physical properties of coarse aggregates including apparent density, water absorption, attached mortar content and crushing value were tested and their mineral characteristics were analyzed. The results showed that the quality of recycled coarse aggregates from twicely recycling waste concrete reached the requirements from structural concrete.


2012 ◽  
Vol 5 (5) ◽  
pp. 692-701 ◽  
Author(s):  
J. J. L. Tenório ◽  
P. C. C. Gomes ◽  
C. C. Rodrigues ◽  
T. F. F. de Alencar

This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC) for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW), which were divided into recycled sand (fine) and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW). The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Suhendra Suhendra

Aggregate quality is very influential on the strength of the resulting concrete. Both coarse and fine aggregates have various characteristics identified from laboratory test results. This study aims to examine the use of various aggregates for a quality of concrete. The coarse aggregate and the fine aggregate used are obtained from the nearest location to the work to be performed. The quality of the concrete reviewed is K-125, K-175 and K-225. The coarse aggregates used are 1-2 size (in cm), 2-3 size (in cm) crushed aggregate and coral. The fine aggregates used for each of the coarse aggregates are also different. The results showed that the coral aggregate did not meet the gradations of concrete aggregate. While the fine aggregate does not meet the gradation of concrete aggregate for the three types used. The concrete compressive strength test results show the use of coarse aggregates of 2-3 size of crushed and coarse aggregate of corals giving the average compressive strength value required for all planned concrete strength. While concrete using coarse aggregates of rocks of size 1-2 only meet the specified compressive strength, but does not meet the required compressive strength.Key words: Aggregates, concrete, compressive strength


2022 ◽  
Vol 12 (1) ◽  
pp. 524
Author(s):  
Chao-Wei Tang ◽  
Chiu-Kuei Cheng ◽  
Lee-Woen Ean

The main purpose of this study was to investigate the mix design and performance of fiber-reinforced pervious concrete using lightweight coarse aggregates instead of ordinary coarse aggregates. There were two main stages in the relevant testing work. First, the properties of the matrix were tested with a rheological test and then different amounts of lightweight coarse aggregate and fine aggregate were added to the matrix to measure the properties of the obtained lightweight pervious concrete (LPC). In order to greatly reduce the experimental workload, the Taguchi experimental design method was adopted. An orthogonal array L9(34) was used, which was composed of four controllable three-level factors. There were four test parameters in this study, which were the lightweight coarse aggregate size, ordinary fine aggregate content, matrix type, and aggregate/binder ratio. The research results confirmed that the use of suitable materials and the optimal mix proportions were the key factors for improving the mechanical properties of the LPC. Due to the use of silica fume, ultrafine silica powder, and polypropylene fibers, the 28-day compressive strength, 28-day flexural strength, and 28-day split tensile strength of the LPC specimens prepared in this study were 4.80–7.78, 1.19–1.86, and 0.78–1.11 MPa, respectively. On the whole, the mechanical properties of the prepared LPC specimens were better than those of the LPC with general composition.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 463
Author(s):  
Ivan Janotka ◽  
Pavel Martauz ◽  
Michal Bačuvčík

In addition to the known uses of natural clays, less publication attention has been paid to clays returned to the production process. Industrially recovered natural clays such as bricks, tiles, sanitary ceramics, ceramic roofing tiles, etc., are applicable in building materials based on concrete as an artificial recycled aggregate or as a pozzolanic type II addition. In this way, the building products with higher added value are obtained from the originally landfilled waste. This paper details the research process of introducing concrete with recycled brick waste (RBW) up to the application output. The emphasis is placed on using a RBW brash as a partial replacement for natural aggregates and evaluating an RBW powder as a type II addition for use in concrete. A set of the results for an RBW is reported by the following: (a) an artificial RBW fine aggregate meets the required standardized parameters for use in industrially made concrete, (b) a RBW powder is suitable for use in concrete as industrially made type II addition TERRAMENT showing the same pozzolanic reactivity as a well-known and broadly used pozzolan-fly ash, and (c) such an RBW as aggregate and as powder are, therefore, suitable for the production of industrially made TRITECH Eco-designed ready-mixed concrete.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2018 ◽  
Vol 4 (12) ◽  
pp. 2971 ◽  
Author(s):  
Saad Tayyab ◽  
Asad Ullah ◽  
Kamal Shah ◽  
Faial Mehmood ◽  
Akhtar Gul

The production and use of plastic bottles is increasing tremendously with passing time. These plastic bottles become a problem when they are disposed as they are non-biodegradable. This means that the waste plastic, when dumped, does not decompose naturally and stays in the environment affecting the ecological system. The use of alternative aggregates like Plastic Coarse Aggregate (PCA) is a natural step in solving part of reduction of natural aggregates as well as to solve the issue discussed above. The researchers are trying from half a century to investigate the alternative materials to be replaced in concrete mixture in place of either aggregate or cement.  In this research, the concrete made from plastic waste as coarse aggregates were investigated for compressive strength and Stress-strain relationship. Plastic coarse aggregate have been replaced in place of natural coarse aggregate by different percentages with w/c 0.5, 0.4 and 0.3. The percentage replacement of plastic aggregate in place of mineral coarse aggregate was 25%, 30%, 35% and 40 %. Using Super-plasticizer Chemrite 520-BAS. OPC-53 grade cement was used. Total of forty five Cylinders were prepared based on different combination of Percentage of Plastic aggregate replaced and W/C as discussed above and checked for compressive strength and stress-strain relationship. The compressive strength increases by about 19.25% due to the decrease in W/C from 0.5 to 0.3 for plastic percentage addition of 40%.


Author(s):  
Atif Jawed

Abstract: Pervious concrete is a special type of concrete, which consists of cement, coarse aggregates, water and if required and other cementations materials. As there are no fine aggregates used in the concrete matrix, the void content is more which allows the water to flow through its bodyThe main aim of this project was to improve the compressive strength characteristics of pervious concrete. But it can be noted that with increase in compressive strength the void ratio decreases. Hence, the improvement of strength should not affect the porosity property because it is the property which serves its purpose. In this investigation work the compressive strength of pervious concrete is increased by a maximum of 18.26% for 28 days when 8% fine aggregates were added to standard pervious concrete Keywords: W/C ratio, pervious Concrete, sugarcane bagasse’s ash, rice husk ash compressive strength, fine aggregates


Author(s):  
Moein Khoshroo ◽  
Ali Akbar Shirzadi Javid ◽  
Nima Rajabi Bakhshandeh ◽  
Mohamad Shalchiyan

In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.


Sign in / Sign up

Export Citation Format

Share Document