scholarly journals Thermal efficiency analysis of buildings with phase change materials.

Author(s):  
Shabana M Thaha ◽  
Bennet Kuriakose ◽  
Rajesh Baby

Increasing global temperature is alarming the need for construction industry to have thermally efficient building materials. Incorporating Phase Change Materials (PCM) in buildings is widely accepted method for reduction in temperature, thereby achieving better thermal efficiency. This paper focuses on the assessment of thermal performance of PCM-incorporated building under tropical climatic condition. The simulation process was carried out using Design Builder Software and the developed building model is validated with the results available in the literature. A parametric study is also performed in order to identify the effect of different parameters like building orientation, window to wall ratio, ceiling height and construction material on the indoor air temperature. The results showed that the maximum reduction was up to 2.76°C. Keywords- Thermal Efficiency, Tropical climate, PCM

2013 ◽  
Vol 683 ◽  
pp. 106-109
Author(s):  
Xiao Gang Zhao ◽  
Ying Pan

Phase change materials, abbreviated as PCM, due to the excellent heat storage performance, have been used as building materials and got more and more attention in recent years. The article introduce the building application of phase change material, and discuss its contribution to the building energy saving.


2015 ◽  
Vol 773-774 ◽  
pp. 1063-1067
Author(s):  
Noor Amira Sarani ◽  
Aeslina Abdul Kadir

Recently waste material pollution is a critical issue in every developing country. The factors such as increasing of growing population, daily and industrial activities will lead to these phenomena. These issues give an idea to use waste as a construction material that will give minimum impact towards the environment. Many researchers have been studied on waste material such as organic waste, sludge, fly ash, rice husk and processed waste tea into fired clay brick. In this study, the investigate on the incorporating of cigarette butts (CBs) was conducted. During this study, different percentages of CBs (0%, 2.5% and 5.0%) were added into fired clay brick. Meanwhile, different heating rates were applied during the firing stage, which are 1°C/min, 3°C/min and 5°C/min respectively. All samples were fired up to 1050°C. Leaching tests were carried out to investigate the possibility of heavy metals leached from the manufactured brick. The results demonstrated that, in terms of physical and mechanical properties, CB Brick (2.5%) at 1°C/min improved the most and leached low heavy metals. For IAQ test, CB Brick (2.5%) fired at 1°C/min is acceptable to be used as building materials since it complied with ICOP-IAQ.


2021 ◽  
Vol 20 (3) ◽  
pp. 135-144
Author(s):  
Tomasz Bien

The paper describes the research on the method of production of granulated phase-change materials (PCM) used in construction industry for the accumulation of thermal energy. As mineral materials for the granules preparation zeolite from fly ash Na-P1 and natural diatomite dust were used which were impregnated with paraffinic filtration waste and granulated using a combined granulation method. Obtained granules were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherm, and differential scanning calorimetry (DSC). Mechanical strength of the materials was determined in a “drop strength” test. Performed analyses revealed that mineral composition and micromorphology of the diatomite and zeolite granules were varied, with zeolite granules having higher mechanical strength.


Author(s):  
Mohammadreza Hasandust Rostami ◽  
Gholamhassan Najafi ◽  
Ali Motevalli ◽  
Nor Azwadi Che Sidik ◽  
Muhammad Arif Harun

Today, due to the reduction of energy resources in the world and its pollutants, energy storage methods and increase the thermal efficiency of various systems are very important. In this research, the thermal efficiency and energy storage of two heat exchangers have been investigated in series using phase change materials (RT82) and single wall carbon nanotubes (SWCNT) and graphene quantum dot nanoparticles (GQD) In this research, two heat exchangers have been used in combination. The first heat exchanger was in charge of storing thermal energy and the second heat exchanger was in charge of heat exchange. The reason for this is to improve the heat exchange of the main exchanger (shell and tube) by using heat storage in the secondary exchanger, which has not been addressed in previous research. The results of this study showed that using two heat exchangers in series, the thermal efficiency of the system has increased. Also, the heat energy storage of the double tube heat exchanger was obtained using phase change materials in the single-walled carbon nanotube composition of about 3000 W. The average thermal efficiency of the two heat exchangers as the series has increased by 52%. In general, the effect of the two heat exchangers on each other was investigated in series with two approaches (energy storage and energy conversion) using fin and nanoparticles, which obtained convincing results.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6044
Author(s):  
Michał Łach ◽  
Kinga Pławecka ◽  
Agnieszka Bąk ◽  
Marcin Adamczyk ◽  
Patrycja Bazan ◽  
...  

The paper deals with the possibility of using Phase Change Materials (PCM) in concretes and geopolymer composites. The article presents the most important properties of PCM materials, their types, and their characteristics. A review of the latest research results related to their use in geopolymer materials is presented. The benefits of using PCM in building materials include the improvement of thermal comfort inside the building, and also the fact that the additive in the form of PCM reduces thermal gradients and unifies the temperature inside the concrete mix, which can reduce the risk of cracking. The paper also presents a critical analysis related to the feasibility of mass scale implementations of such composites. It was found that the use of PCM in sustainable construction is necessary and inevitable, and will bring a number of benefits, but it still requires large financial resources and time for more comprehensive research. Despite the fact that PCM materials have been known for many years, it is necessary to refine their form to very stable phases that can be used in general construction as well as to develop them in a cost-effective form. The selection of these materials should also be based on the knowledge of the matrix material.


2010 ◽  
Vol 96 ◽  
pp. 161-164
Author(s):  
Hai Jian Li ◽  
Zhi Jiang Ji ◽  
Zhi Jun Xin ◽  
Jing Wang

The types and characteristics of phase change materials were discussed. With respect to application in building materials, the PCM should have more attractive properties including high latent heat values, stability and proper melting point, inflammability, corrosiveness and supercooling. Phase change building material (PCBM) was prepared using vacuum absorption method and tested by means of Differential Scanning Calorimetry(DSC) and Scanning Electron Microscopy(SEM). The testing results have shown that organic PCM was absorbed into the holes of inorganic carriers completely and distributed evenly with stable performances. It is concluded that the composite PCM has steady temperature-adjusting function and the preparation means is acceptable.


2014 ◽  
Vol 672-674 ◽  
pp. 1828-1832
Author(s):  
Hai Yang Ni ◽  
Xiao Qin Zhu ◽  
Jin Hu ◽  
Yu Bie ◽  
Liang Chen ◽  
...  

Phase change building materials are a category of building materials with the integration of structure and function, which can be achieved by phase change materials composite with the traditional building materials. They have such characteristics as the improvement of energy saving efficiency in buildings, the decrease of heating energy consumption and the adjustment of thermal comfort in the room environment etc. Therefore, phase change building materials are one of the most efficient means of energy utilizations, which has important significance for promoting their investigation and applications of energy saving in buildings.


2019 ◽  
Vol 282 ◽  
pp. 02052
Author(s):  
Václav Kočí ◽  
Jiří Maděra ◽  
Robert Černý

A precise technique for determination of effective specific heat capacity of building materials is presented within this paper. The applicability of the technique is demonstrated on a PCM-enhanced plaster, being characterized by a phase change between 15 and 30 °C. The effective specific heat capacity is determined by means of inverse analysis of calorimetric data using computational model of the device. The identified effective specific heat capacity values reached up to 1890 J·kg-1·K-1 when cooled and 1580 J·kg-1·K-1 when heated. Using this quantity in simulation of thermal performance, the PCM-enhanced plaster showed to have a promising potential to be used in buildings’ interiors as a thermal regulator to stabilize inner environment as it contributed to a thermal oscillation decrease by up to 2.5 °C


Sign in / Sign up

Export Citation Format

Share Document