Developing a better Common Operating Picture (COP) using open source data in a web map solution.

2017 ◽  
Vol 2017 (1) ◽  
pp. 892-913
Author(s):  
Gry Eide Fiksdal

ABSTRACT How can the responders of an oil spill operation make sure that the Common Operating Picture (COP) gives the situational awareness that is needed? How can the response personnel avoid producing and consuming so much data that the COP gets overloaded with information? How can the users differentiate the “need to have” from the “nice to have” data? And what type of information do response personnel need offshore, and is that same information relevant for the Incident Command Post? These are some of the questions that NOFO has discussed with the Norwegian Coastal Administration, our partner in the project “Web based map solution”. The project has so far developed a shoreline response tool, consisting of a web map solution and a mobile application (App). With the “Shoreline App” you can collect data in the field, take pictures and video, view oil contamination, and quickly communicate this to the web map-solution. This new technology enables the response organisation to document and act faster, more efficient with increased accuracy. The shoreline clean-up module includes SCAT, work assignments and daily reports from the field, as well as statistics and analysing tools. Inspired by IOGP-IPIECA (2015), NOFO have started to improve the NOFO COP OSR (oil spill response) to cover offshore, nearshore and shoreline operations. The scope for this work is to create a seamless integration of the different data that we receive, especially the surveillance sensor data such as aerial overflights, satellite images, images from ships and UAVs (unmanned aerial vehicles). All the data registered in the system are given a predefined timeframe in which they will automatically be deactivated from the COP. This aids us in managing the data flow, presenting the latest information available, and avoid taking action based on outdated information. A timeline gives either predictions, real time information or historical data, and enables the user to “play off” the incident from Day 1 until the end, or even for a specific period. The Adaptive interface, which is the platform the NOFO COP OSR uses, features the possibility to build different COP viewpoints for different levels in the response organisation. The NOFO COP OSR may also be used for communication externally during and after clean-up efforts. The public and press can get limited insight through role-based access. Based on the collected data, statistics and graphs are easily generated for use in the preparation of reports and presentations.

Author(s):  
Gry Eide Fiksdal ◽  
Cathrine Floen Fullwood

ABSTRACT « October 8th at 1630 hours: Equinor reports loss of well control on the exploration well «Staalull». Large amounts of crude oil flow continuously from the seabed at the depth of 1200 feet. An oil spill from the exploration well has a potential for landfall within five days. The oil characteristics are unknown. Equinor is unable to control the well and needs to start planning for a relief well. This may take several months. » This is a potential scenario for a major oil spill and the exercise planned for the Norwegian coast, October 2019. Approximately 600 responders were involved. The intention was to test Equinor and NOFO (The Norwegian Clean Seas Association for Operating Companies) and their ability to handle a long-lasting oil spill in a safe and secure manner – within all barriers. The exercise involved Equinor CMT (Crisis Management Team), IMT (Incident Management Team), NOFO, offshore and nearshore vessels, aircraft, digital SCAT (Shoreline Cleanup and Assessment Technique) surveys and beach cleaning operations at different locations onshore. The main goal of the exercise was interaction and communication within and between the different response organisations. The intermediate objectives were 1) establish a common situational awareness and 2) communicate accurate information at the right time to affected parties. The exercise took place at seven different locations in Norway and establishment and maintenance of situational awareness throughout the response organisation was crucial to the effective handling of the incident. This required effective communication and information sharing throughout all levels. The incident management is based on the Incident Command System (ICS), but modified to align with Norwegian conditions. During the exercise we performed an extensive evaluation of all the organisations; with feedback to and from the personnel involved. The result of the evaluation, lessons learned, and implementation of improvements within the organisations involved, will improve the Norwegian industry's ability to manage long-lasting oils spills in the future.


2021 ◽  
Vol 13 (12) ◽  
pp. 6585
Author(s):  
Mihhail Fetissov ◽  
Robert Aps ◽  
Floris Goerlandt ◽  
Holger Jänes ◽  
Jonne Kotta ◽  
...  

The Baltic Sea is a unique and sensitive brackish-water ecosystem vulnerable to damage from shipping activities. Despite high levels of maritime safety in the area, there is a continued risk of oil spills and associated harmful environmental impacts. Achieving common situational awareness between oil spill response decision makers and other actors, such as merchant vessel and Vessel Traffic Service center operators, is an important step to minimizing detrimental effects. This paper presents the Next-Generation Smart Response Web (NG-SRW), a web-based application to aid decision making concerning oil spill response. This tool aims to provide, dynamically and interactively, relevant information on oil spills. By integrating the analysis and visualization of dynamic spill features with the sensitivity of environmental elements and value of human uses, the benefits of potential response actions can be compared, helping to develop an appropriate response strategy. The oil spill process simulation enables the response authorities to judge better the complexity and dynamic behavior of the systems and processes behind the potential environmental impact assessment and thereby better control the oil combat action.


Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 12
Author(s):  
Evangelos Maltezos ◽  
Athanasios Douklias ◽  
Aris Dadoukis ◽  
Fay Misichroni ◽  
Lazaros Karagiannidis ◽  
...  

Situational awareness is a critical aspect of the decision-making process in emergency response and civil protection and requires the availability of up-to-date information on the current situation. In this context, the related research should not only encompass developing innovative single solutions for (real-time) data collection, but also on the aspect of transforming data into information so that the latter can be considered as a basis for action and decision making. Unmanned systems (UxV) as data acquisition platforms and autonomous or semi-autonomous measurement instruments have become attractive for many applications in emergency operations. This paper proposes a multipurpose situational awareness platform by exploiting advanced on-board processing capabilities and efficient computer vision, image processing, and machine learning techniques. The main pillars of the proposed platform are: (1) a modular architecture that exploits unmanned aerial vehicle (UAV) and terrestrial assets; (2) deployment of on-board data capturing and processing; (3) provision of geolocalized object detection and tracking events; and (4) a user-friendly operational interface for standalone deployment and seamless integration with external systems. Experimental results are provided using RGB and thermal video datasets and applying novel object detection and tracking algorithms. The results show the utility and the potential of the proposed platform, and future directions for extension and optimization are presented.


Author(s):  
S. Danilov ◽  
M. Kozyrev ◽  
M. Grechanichenko ◽  
L. Grodzitskiy ◽  
V. Mizginov ◽  
...  

Abstract. Situational awareness of the crew is critical for the safety of the air flight. Head-up display allows providing all required flight information in front of the pilot over the cockpit view visible through the cockpit’s front window. This device has been created for solving the problem of informational overload during piloting of an aircraft. While computer graphics such as scales and digital terrain model can be easily presented on the such display, errors in the Head-up display alignment for correct presenting of sensor data pose challenges. The main problem arises from the parallax between the pilot’s eyes and the position of the camera. This paper is focused on the development of an online calibration algorithm for conform projection of the 3D terrain and runway models on the pilot’s head-up display. The aim of our algorithm is to align the objects visible through the cockpit glass with their projections on the Head-up display. To improve the projection accuracy, we use an additional optical sensor installed on the aircraft. We combine classical photogrammetric techniques with modern deep learning approaches. Specifically, we use an object detection neural network model to find the runway area and align runway projection with its actual location. Secondly, we re-project the sensor’s image onto the 3D model of the terrain to eliminate errors caused by the parallax. We developed an environment simulator to evaluate our algorithm. Using the simulator we prepared a large training dataset. The dataset includes 2000 images of video sequences representing aircraft’s motion during takeoff, landing and taxi. The results of the evaluation are encouraging and demonstrate both qualitatively and quantitatively that the proposed algorithm is capable of precise alignment of the 3D models projected on a Head-up display.


2001 ◽  
Author(s):  
Shounak Athavale ◽  
Matt Davies ◽  
Miro Suga ◽  
James Williams ◽  
Kesh Narayan ◽  
...  

Abstract A report of the ASME Global Technologies Committee in 1999 stressed the need to inform government agencies about the importance of the activities of mechanical engineers. In particular, while government agencies and the public in general seem to understand the romantic idea of concept generation (inventors and scientists), they do not comprehend the efforts that go into realization of an idea into a usable product (engineering and manufacturing) and the benefits of this activity to the global society. In fact the product realization process makes the cutting edge products affordable and available to every strata of the society. In spite of current success, engineering and manufacturing functions are continuously challenged by the changing demands and business environment. Specifically, opening of world markets and industrial globalization require that manufacturing functions are not only flawless and efficient, but also be compatible with the global business environment. The goal of this panel is to showcase past contributions to the field of manufacturing and build a case for continued support of future manufacturing research and education. The panelist will begin the discussion by addressing five topics/questions. Comments and question from the audience are encouraged. The five topics/questions of focus for this panel discussion are 1. Innovative products of last century like cars, planes, computers, etc. remain accessible to masses only due to the revolutionary manufacturing technology at the time. Which of the past manufacturing technologies will you attribute this tremendous success to? Are any of these technologies obsolete or are on the verge of extinction? 2. During past few years most of the world has opened up to international trade and business. Global marketplace is not just a dream; it is a reality and is here to stay. Besides, the business drivers and associated economic advantages, supporting engineering and manufacturing technologies have played a vital role in keeping the global business afloat. In your opinion what key technology drivers (including any manufacturing technologies) are behind this success? Do any of the technical issues need immediate attention? 3. During the 20th century we have witnessed tremendous growth in manufacturing technology. Traditional research and development focused on getting the product out i.e. development of manufacturing and assembly processes and their optimization. The next big thing was to get the product out in an efficient and cost-effective manner. It fueled research in material flow and inventory management, resulting in techniques like JIT, Kanban, supply-chain management, etc. More recently eManufacturing initiatives (B2B, B2C, B2E, etc.) have made a tremendous impact in seamless integration of business operations (suppliers-purchasing-engineering-manufacturing-marketing-service), resulting in productivity gains. What’s next? 4. As resources are geographically distributed and scarce; consolidation, collaboration and leveraging often become key issues in a global industry. Research and Development may not be any different. In your opinion, are the days for “lone researchers/developers” over? If yes, how do you envision future R&D activities to function? If no, how to incorporate individual R&D efforts? 5. Commercial success of technical breakthroughs depends on the workforce that can implement the new technology and consumers who can utilize it. Often the term “technology overload” is used when either of these groups fails to comprehend the new technology. To avoid this trap, it is necessary for future manufacturing leaders and innovators to have a unique skill set. What kind of educational training and experience will be required of future manufacturing engineers/researchers?


CJEM ◽  
2018 ◽  
Vol 20 (S1) ◽  
pp. S40-S40
Author(s):  
A. K. Sibley ◽  
T. Jain ◽  
B. Nicholson ◽  
M. Butler ◽  
S. David ◽  
...  

Introduction: Situational awareness (SA) is essential for maintenance of scene safety and effective resource allocation in mass casualty incidents (MCI). Unmanned aerial vehicles (UAV) can potentially enhance SA with real-time visual feedback during chaotic and evolving or inaccessible events. The purpose of this study was to test the ability of paramedics to use UAV video from a simulated MCI to identify scene hazards, initiate patient triage, and designate key operational locations. Methods: A simulated MCI, including fifteen patients of varying acuity (blast type injuries), plus four hazards, was created on a college campus. The scene was surveyed by UAV capturing video of all patients, hazards, surrounding buildings and streets. Attendees of a provincial paramedic meeting were invited to participate. Participants received a lecture on SALT Triage and the principles of MCI scene management. Next, they watched the UAV video footage. Participants were directed to sort patients according to SALT Triage step one, identify injuries, and localize the patients within the campus. Additionally, they were asked to select a start point for SALT Triage step two, identify and locate hazards, and designate locations for an Incident Command Post, Treatment Area, Transport Area and Access/Egress routes. Summary statistics were performed and a linear regression model was used to assess relationships between demographic variables and both patient triage and localization. Results: Ninety-six individuals participated. Mean age was 35 years (SD 11), 46% (44) were female, and 49% (47) were Primary Care Paramedics. Most participants (80 (84%)) correctly sorted at least 12 of 15 patients. Increased age was associated with decreased triage accuracy [-0.04(-0.07,-0.01);p=0.031]. Fifty-two (54%) were able to localize 12 or more of the 15 patients to a 27x 20m grid area. Advanced paramedic certification, and local residency were associated with improved patient localization [2.47(0.23,4.72);p=0.031], [-3.36(-5.61,-1.1);p=0.004]. The majority of participants (78 (81%)) chose an acceptable location to start SALT triage step two and 84% (80) identified at least three of four hazards. Approximately half (53 (55%)) of participants designated four or more of five key operational areas in appropriate locations. Conclusion: This study demonstrates the potential of UAV technology to remotely provide emergency responders with SA in a MCI. Additional research is required to further investigate optimal strategies to deploy UAVs in this context.


1991 ◽  
Vol 1991 (1) ◽  
pp. 267-272
Author(s):  
Robert G. Rolan ◽  
Keith H. Cameron

ABSTRACT While developing its new crisis management plan in 1989, BP America (BPA) modified the incident command system (ICS) for use as the organizational structure of its oil spill response team. This was done to be compatible with the post-Exxon Valdez organization of the Alyeska response team and for certain advantages it would provide for responses in other locations and in other types of crisis situations. The ICS was originally developed for fighting wildfires in California and has since been widely adopted by other fire and emergency services in the U. S. While retaining most of the ICS structure, ?PA developed modifications necessary to fit the unique requirements of oil spill response. The modified ICS was used during a full scale test of ?PA's draft crisis management plan in December 1989, and thus was familiar to ?PA's top executives and other participating response team members. When the American Trader spill occurred in February 1990, BPA's management used the modified ICS organization even though the crisis management plan had not been finalized or widely distributed within the company. Details of the organizational structure evolved as the spill response progressed, in part due to the changing requirements of the response over time and in part because of previously unrecognized issues. This paper describes that evolution and the resulting final structure. Essential differences between the original ICS and BPA's oil spill version of it are highlighted. Despite the unrecognized issues and the unfamiliarity of some team members with the ICS, the organization worked well and can be credited with a share of the success of the American Trader response.


1995 ◽  
Vol 1995 (1) ◽  
pp. 761-765
Author(s):  
William Boland ◽  
Pete Bontadelli

ABSTRACT The Marine Safety Division of the 11th Coast Guard District and the California Office of Oil Spill Prevention and Response are pursuing new avenues to assure that federal, state, and local efforts in California achieve the goals of the Oil Pollution Act of 1990 and the Lempert-Keene-Seastrand Oil Spill Prevention and Response Act of 1990. Coordination of the seven California area committees, publishing detailed area contingency plans, and the implemention of a memorandum of agreement on oil spill prevention and response highlight recent cooperative successes. In 1994 a joint Coast Guard/state/industry incident command system task force drafted an ICS field operations guide and incident action plan forms that meet National Interagency Incident Management System and fire scope ICS requirements.


1999 ◽  
Vol 1999 (1) ◽  
pp. 367-371
Author(s):  
Jim E. Peschel

ABSTRACT In August 1997 the training and education workgroup of the Northwest Area Committee sponsored an Oil Spill Control Course specifically tailored to responders in the Pacific Northwest. The training provided management skills to supervisory field staff within the Operations Section of the Incident Command System. The course focused on personnel and equipment resources located in the Puget Sound region. The syllabus was designed, coordinated, and developed by a consortium of Federal and State regulatory agencies as well as the primary Oil Spill Removal Organizations in the Northwest region. Each agency participated without expending additional training costs by exchanging services-in-kind for quotas. An added benefit of this cooperation was the opportunity to train alongside responders from other agencies and organizations while using the actual equipment available within the region. The course used lectures and field exercises to focus on the Northwest Area Contingency Plan, Geographic Response Plans, oil product identification, shoreline countermeasures, cleanup techniques, and protection strategies typical within the Puget Sound operating environment. By using local instructors, actual equipment, and realistic scenarios, the local response community can continue to benefit from this type of tailor-made training and focus on the actual needs of the host community.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2017425
Author(s):  
Cassidee Shinn ◽  
Joe Stewart ◽  
Yvonne Addassi

California has approximately >10,000 vessels calling its ports each year, and 200–300 facilities state wide, many of which are required to have a California Oil Spill Contingency Plan (Contingency Plan) on file with Office of Spill Prevention and Response (OSPR). Spill Management Teams (SMT), either staffed by Contingency Plan holders' employees or contracted out, and the use of the Incident Command System (ICS) structure must be described in these plans. OSPR introduced an unannounced SMT drill program (Program) in 2012 to ensure that Contingency Plan holders can successfully complete the proper initial notifications, activate their SMT, and use ICS in accordance with their approved Contingency Plan and California Code 820.01, Drills and Exercises. There are multiple goals of this Program, including the enhanced capability of SMTs, OSPR, and other partners. This Program provides continued education and training for Contingency Plan holders and SMTs in an effort to bolster the initial response phase of an actual incident. Through these drills, SMTs must demonstrate that they could make proper notifications and decisions during an actual incident and be staffed with trained personnel in ICS to fill positions before State and Federal representatives respond. Additionally, SMTs should deploy resources listed in their approved Contingency Plans and ensure those resources are up to date, available, and sufficient. Furthermore, drills provide an opportunity for OSPR and SMTs to build relationships through testing these procedures, which should make the initial response more efficient and effective. Lastly, the drills are often conducted with representatives from United States Coast Guard and Environmental Protection Agency, both of which have their own drill programs. Working in conjunction with federal partners ensures continuity and fewer required drills of SMTs. Since the beginning of the Program, SMTs continue to improve their response capabilities, validated by more successfully completed unannounced drills. OSPR has conducted 30 unannounced drills, all of which were on SMTs for marine facilities and vessels. With the expanded authority of OSPR to regulate facilities statewide in 2015, this Program will continue to grow. Ultimately, a more comprehensive Program should lead to enhanced SMT capability statewide, and therefore better protection of the State's natural resources overall. The goal of this poster will be to describe: 1) the history and purpose of this Program; 2) the lessons learned and improvements of SMTs and Contingency Plans; and 3) the expansion of the Program from marine to statewide.


Sign in / Sign up

Export Citation Format

Share Document