scholarly journals Small Scale Physical and Bio-Chemical Processes Affecting the Transport of Oil after a Spill

Author(s):  
Joseph Katz ◽  
CJ Beegle-Krause ◽  
Michel Boufadel ◽  
Marcelo Chamecki ◽  
Vijay John ◽  
...  

Abstract A series of GOMRI-sponsored experimental and computational studies have discovered, elucidated and quantified the impact of small-scale processes on the dispersion, transport and weathering of crude oil slicks and subsurface plumes. Physical interfacial phenomena occurring at micron-scales include the formation of particle-stabilized emulsions, penetration of particles into oil droplets, formation of compound water-containing oil droplets during plume breakup, and the mechanisms affecting the breakup of oil into micro-droplet by tip streaming resulting from the drastic reduction in interfacial tension upon introduction of dispersant. Efforts aimed at development targeted delivery of surfactants have introduced solvent-free halloysite nanotubes that can be filled with surfactants, and preferentially released at oil-water interface. Buoyant surfactant-based gels, which enhance their encounter rates with oil slicks and adhere to weathered oil have also been developed. Studies of oil-bacteria interactions during early phases of biodegradation and shown how the bacteria, some highly active, attach to the oil-water interfaces and form complex films. Clay-decorated droplets sequester these bacteria and promote the propagation of these biofilm. Long extracellular polymeric substance (EPS) streamers generated by these biofilms form connected networks involving multiple droplets and debris, as well as increase the drag on the oil droplets. At 0.01–10 m scales, the generation of subsurface and airborne crude oil droplets by breaking waves, subsurface plumes and raindrop impact have been quantified. For waves, premixing the oil with dispersant reduces the droplets sizes to micron- and submicron-scales, and changes the slope of their size distribution. Without dispersant, the droplet diameters can be predicted based on the turbulence scales. With dispersant, the droplets are much smaller than the turbulence scales owing to the abovementioned tip-streaming. Aerosolization of oil is caused both by the initial splash and by subsequent bubble bursting, as entrained bubbles rise to the surface. Introduction of dispersant increases the airborne nano-droplet concentration by orders of magnitude, raising health questions. Dispersant injection also reduces the size of droplets in subsurface plumes, affecting the subsequent dispersion of these plume by currents and turbulence. Advancements have also been made in modeling of dissolution of oil in plumes, as well as in applications of Large Eddy Simulations (LES) to model plumes containing oil droplets and gas bubbles. The new multiscale framework, which accounts for the droplet size distribution and mass diffusion, can simulate the near- and far-fields of plumes, and predict the effect of vertical mixing promoted by turbulence on the transport of dispersed oil.

Author(s):  
Jose G. Severino ◽  
Luis E. Gomez ◽  
Steve J. Leibrandt ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Large gravity separation tanks play an essential role in crude oil production in many fields worldwide. These tanks are used to separate water from an oil-rich stream before safely returning it to the environment. The oil/water dispersion enters the tanks through a feed spreader consisting of an array of pipes with small effluent nozzles. A major challenge is being able to predict oil/water dispersion distribution along the spreader as well as, the maximum water droplet size exiting through the effluent nozzles, under a given set of conditions. The capacity of the studied tank is 80,000 barrels (12,719 m3). Current feed stream is about 60,000 bpd (9,540 m3/day) of wet crude containing about 20% water by volume. A significant increase in flow rates and water volume fraction is anticipated [7], as more wells are added and existing ones mature. This work is aimed at investigating the separation performance of these tanks under current and future flow conditions; focusing primarily on the flow phenomena and droplet size distribution inside the spreader. The main objective is then to identify the impact of the spreader’s geometry and piping configuration on flow behavior and tank’s separation efficiency. The final product provides key information needed for mechanistic modeling the tank separation performance and optimizing tank components’ design. The feed spreader is simulated using Computational Fluid Dynamics (CFD) to assess oil/water flow distribution inside the network. Droplet size distribution along branch-pipes effluent nozzles in, including droplet breakup and coalescence has been studied using the Gomez mechanistic model [2] with input from CFD results. An experimental investigation of the spreader using a scaled prototype was also conducted to better understand flow phenomena and verify the CFD models. Results confirm the occurrence of significant maldistribution of the water and oil phases along the spreader that could impair separation efficiency.


1991 ◽  
Vol 1991 (1) ◽  
pp. 677-680 ◽  
Author(s):  
D.D. Evans ◽  
G.W. Mulholland ◽  
J.R. Lawson ◽  
E.J. Tennyson ◽  
M.F. Fingas ◽  
...  

ABSTRACT The Center for Fire Research (CFR) at the National Institute of Standards and Technology (NIST) is conducting research related to safety in offshore drilling and oil spill pollution under joint funding from Minerals Management Service (MMS), U.S. Coast Guard, and the American Petroleum Institute. Technical assistance in measurement has been donated by Environment Canada. This research has focused on examining the phenomena associated with crude oil combustion and the impact of using burning as a spill response method. The process of burning crude oil on water as a means to mitigate oil spills has been investigated with a research effort combining both small-scale experiments and calculations. As a result of these studies, there has been increased understanding of the burning process, including burning rate, heat radiation, smoke emission, smoke composition, and smoke dispersion in the atmosphere. A key to gaining acceptance of burning as a spill response technique is the demonstration that favorable results obtained at laboratory scale can be shown to continue in test burns representing the size of fires expected in actual operations. Field-scale burn tests are being planned and coordinated jointly by MMS, API, USCG, and Environment Canada to document the use of burning technology under conditions simulating actual oil spill cleanup operations. The purpose of this project is to measure the effects of oil spill burning in laboratory and field tests.


2016 ◽  
Vol 792 ◽  
pp. 307-327 ◽  
Author(s):  
Zhaoyuan Wang ◽  
Jianming Yang ◽  
Frederick Stern

High-fidelity simulations of wave breaking processes are performed with a focus on the small-scale structures of breaking waves, such as bubble/droplet size distributions. Very large grids (up to 12 billion grid points) are used in order to resolve the bubbles/droplets in breaking waves at the scale of hundreds of micrometres. Wave breaking processes and spanwise three-dimensional interface structures are identified. It is speculated that the Görtler type centrifugal instability is likely more relevant to the plunging wave breaking instabilities. Detailed air entrainment and spray formation processes are shown. The bubble size distribution shows power-law scaling with two different slopes which are separated by the Hinze scale. The droplet size distribution also shows power-law scaling. The computational results compare well with the available experimental and computational data in the literature. Computational difficulties and challenges for large grid simulations are addressed.


2021 ◽  
Author(s):  
Wenxin Li ◽  
Yue Yu ◽  
Deqi Xiong ◽  
Zhixin Qi ◽  
Sinan Fu ◽  
...  

Abstract After oil spills occur, dispersed oil droplets can collide with suspended particles in the water column to form the oil-mineral aggregate (OMA) and settle to the seafloor. However, only a few studies have concerned the effect of chemical dispersant on this process. In this paper, the mechanism by which dispersant affects the surface properties of kaolin as well as the viscosity and oil-seawater interfacial tension (IFTow) of Roncador crude oil were separately investigated by small scale tests. The results indicated that the presence of dispersant impairs the zeta potential and enhances the hydrophobicity of kaolin. The viscosity of Roncador crude oil rose slightly as the dosage of dispersant increased while IFTow decreased significantly. Furthermore, the oil dispersion and OMA formation at different dispersant-to-oil ratio (DOR) were evaluated in a wave tank. When DOR was less than 1:40, the oil enhancement of dispersant was not significant. In comparison, it began to contribute when DOR was over 1:40 and the effect became more pronounced with the increasing DOR. The adhesion between oil droplets and kaolin was inhibited with the increasing DOR. The size ratio between oil droplets and particles is the significant factor for OMA formation. The closer the oil-mineral size ratio is to 1, the more difficultly the OMA forms.


Author(s):  
Giuseppina Palma ◽  
Sara Mizar Formentin ◽  
Barbara Zanuttigh

This paper is focused on the analysis of the impact process at dikes with crown walls and parapets under breaking and non-breaking waves. A small-scale laboratory campaign was performed at the Hydraulic Laboratory of Bologna. The experiments were aimed to analyze the vertical pressure distribution along the crown wall and the resulting wave forces, by varying geometrical and hydraulic parameters. The tested configurations included different off-shore slopes, dike crest widths, crown-wall heights, dike crest freeboards and the inclusion of the parapet. The measurements were combined with the image analysis of the run-up and of the wave impact process. A sub-set of the experiments was numerically reproduced, with the openFOAM modelling suite, to support and to extend the experimental results. The results confirmed the link between the air content, the shape and the magnitude of the pressures according to the breaker type, already observed for larger-scale experiments.


SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1812-1826
Author(s):  
Subhash Ayirala ◽  
Zuoli Li ◽  
Rubia Mariath ◽  
Abdulkareem AlSofi ◽  
Zhenghe Xu ◽  
...  

Summary The conventional experimental techniques used for performance evaluation of enhanced oil recovery (EOR) chemicals, such as polymers and surfactants, have been mostly limited to bulk viscosity, phase behavior/interfacial tension (IFT), and thermal stability measurements. Furthermore, fundamental studies exploring the different microscale interactions instigated by the EOR chemicals at the crude oil/water interface are scanty. The objective of this experimental study is to fill this existing knowledge gap and deliver an important understanding on underlying interfacial sciences and their potential implications for oil recovery in chemical EOR. Different microscale interactions of EOR chemicals, at crude oil/water interface, were studied by using a suite of experimental techniques, including an interfacial shear rheometer, Langmuir trough, and coalescence time measurement apparatus at both ambient (23°C) and elevated (70°C) temperatures. The reservoir crude oil and high-salinity injection water (57,000 ppm total dissolved solids) were used. Two chemicals, an amphoteric surfactant (at 1,000 ppm) and a sulfonated polyacrylamide polymer (at 500 and 700 ppm) were chosen because they are tolerant to high-salinity and high-temperature conditions. Interfacial viscous and elastic moduli (viscoelasticity), interface pressures, interface compression energies, and coalescence time between crude oil droplets are the major experimental data measured. Interfacial shear rheology results showed that surfactant favorably reduced the viscoelasticity of crude oil/water interface by decreasing the elastic and viscous modulus and increasing the phase angle to soften the interfacial film. Polymers in brine either alone or together with surfactant increased the viscous and elastic modulus and decreased the phase angle at the oil/water interface, thereby contributing to interfacial film rigidity. Interfacial pressures with polymers remained almost in the same order of magnitude as the high-salinity brine. In contrast, a significant reduction in interfacial pressures with surfactant was observed. The interface compression energies indicated the same trend and were reduced by approximately two orders of magnitude when surfactant was added to the brine. The surfactant was also able to retain similar interface behavior under compression even in the presence of polymers. The coalescence times between crude oil droplets were increased by polymers, while they were substantially decreased by the surfactant. These consistent findings from different experimental techniques demonstrated the adverse interactions of polymers at the crude oil/water interface to result in more rigid films, while confirming the high efficiency of the surfactant to soften the interfacial film, promote the oil droplets coalescence, and mobilize substantial amounts of residual oil in chemical EOR. This experimental study, for the first time, characterized the microscale interactions of surfactant-polymer chemicals at the crude oil/water interface. The applicability of several interfacial experimental techniques has been demonstrated to successfully understand underlying interfacial sciences and oil mobilization mechanisms in chemical EOR. These techniques and methods can provide potential means to efficiently screen and optimize EOR chemical formulations for better oil recovery in both sandstone and carbonate reservoirs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Senda Ben Jmaa ◽  
Amjad Kallel

The marine environment is constantly at risk of pollution by hydrocarbon spills that requires its cleanup to protect the environment and human health. Posidonia oceanica (L.) (PO) beach balls, which are characteristic of the Mediterranean Sea and abundant on the beaches, are used as biosorbent to remove hydrocarbons from the sea. The impact of several factors such as oil concentration, time sorption, and weight sorbent was investigated to determine the oil and water sorption capacity for raw and milled P. oceanica fibers. The study of kinetic models for initial crude oil concentration of 2.5, 5, 8.8, 10, 15, 20, 30, and 40 g/L revealed that crude uptake followed the pseudo-first-order model while, for isotherm models, the crude uptake onto the P. oceanica tended to fit the Langmuir model. Experiments were performed according to two systems: a pure oil and pure water system and a mixed oil/water system. For the dry system (pure oil and pure water), the maximum oil and water sorption capacity of raw and milled fibers was found to be 5.5 g/g and 14 g/g for oil and 14.95 g/g and 15.84 g/g for water, respectively, whereas, in the mixed oil/water system, the maximum oil and water sorption capacity was estimated as 4.74 g/g, 12.80 g/g and 7.41 g/g, 8.31 g/g, respectively. The results showed that, in spite of their absorbency of a lot of water, the milled fibers with grain size ranging between 0.5 mm and 1 mm might be the relevant sorbent for the elimination of crude oil from seawater thanks to its efficient sorption capacity and low cost.


1991 ◽  
Vol 1991 (1) ◽  
pp. 501-506 ◽  
Author(s):  
Gerard A. L. Delvigne

ABSTRACT Oil droplets form through various processes when oil is spilled at sea:Breakup of the oil surface layer by breaking waves and intrusion of the droplets into the water column (natural dispersion)Enhanced breakup of the oil layer by application of dispersants (chemical dispersion)Breakup of oil lumps from a subsurface spill by turbulence in the waterEntrainment of droplets from a boomed oil slick caused by a large difference in velocity between the oil and the waterBreakup of oil droplets after disposal of oily water into the turbulent wake of a ship. The formation of droplets from a coherent oil mass has been found to be dependent on a complex structure of process parameters, for example, the turbulent eddy structure in the water, internal breaking waves on the oil-water interface, and viscosity and interfacial tension of the oil. The behavior of oil and oil droplet formation in the above processes can be studied relatively easily in small-scale laboratory models, provided that the scaling rules are understood and the laboratory results can be interpreted in terms of field situations. Several laboratory model studies of oil droplet formation were performed by Delft Hydraulics. Much attention was paid to scaling rules and the reliable interpretation of the results in terms of field conditions. Results and conclusions about the modeling process are discussed.


2014 ◽  
Vol 2014 (1) ◽  
pp. 747-761
Author(s):  
Charles Huber ◽  
Alexis Steen ◽  
Brian Parscal

ABSTRACT The Deepwater Horizon (DWH) crude oil release provided an occasion to test the delivery and effectiveness of dispersants on surface oil slicks to reduce the potential exposure of shoreline habitats and marine wildlife to spilled oil. In the beginning of the DWH response, there was concern that the calm sea conditions did not provide sufficient wave energy for dispersant action to occur. At one point a minimum 3-foot wave height requirement for dispersant application was set in an attempt to ensure sufficient mixing energy for dispersant activation was present at the time of application. Because of the ability of aerial dispersant application to rapidly treat large spatial areas and quantities of oil, there was a contrasting concern that a 3-foot (0.91 m) minimum wave height requirement was overly restricting dispersant operations; thereby, increasing environmental exposures. To evaluate the wave heights that effectively dispersed the Macondo crude oil, the SMART (Special Monitoring of Applied Response Technologies) Tier II/III monitoring data of dispersant applications performed in low wave conditions, i.e., < 3 ft (0.91m) were analyzed. Of the 27 SMART Tier II/III monitoring operations conducted in significant wave heights (SWHs) of < 3 feet (0.91 m), 21 were reported as “effective,” 4 were reported as “inconclusive,” and only 2 were reported as “no observed dispersion.” These results demonstrate dispersants were effective in low wave conditions and on weathered Macondo crude oil as a function of distance from the spill site. The paper then estimates the impact that setting wave height restrictions has on dispersant operations showing that a > 3 feet requirement could reduce surface dispersant operational days by as much as 67%. With the dispersant assets available during the DWH response, this could have resulted in leaving up to 700,000 gallons of oil per day on the water,a thus exposing shoreline habitat and offshore wildlife to an increased risk of oiling. The paper concludes thatWave height should not be used as a criterion for approving or conducting surface dispersant application operations, becausewave heights as low as 0.5–1.0 feet were effective in immediately dispersing fresh and weathered Macondo crude oil, and may be sufficient to disperse other oils, andResearch on dispersant application in calm sea conditions has shown that oils would rapidly and almost totally disperse when exposed to breaking waves after being left on a calm water surface for prolonged periods. The paper recommends that government and response organizations should review and consider revising their guidance and operational procedures for dispersant application approval in light of the analysis presented in this paper.


2015 ◽  
Vol 29 (6) ◽  
pp. 3616-3625 ◽  
Author(s):  
Daniel P. Cherney ◽  
Chunping Wu ◽  
Rachel M. Thorman ◽  
Jessica L. Hegner ◽  
Mohsen S. Yeganeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document