scholarly journals ANALYSIS OF THE IMPACT PROCESS AT DIKES WITH CROWN WALLS AND PARAPETS

Author(s):  
Giuseppina Palma ◽  
Sara Mizar Formentin ◽  
Barbara Zanuttigh

This paper is focused on the analysis of the impact process at dikes with crown walls and parapets under breaking and non-breaking waves. A small-scale laboratory campaign was performed at the Hydraulic Laboratory of Bologna. The experiments were aimed to analyze the vertical pressure distribution along the crown wall and the resulting wave forces, by varying geometrical and hydraulic parameters. The tested configurations included different off-shore slopes, dike crest widths, crown-wall heights, dike crest freeboards and the inclusion of the parapet. The measurements were combined with the image analysis of the run-up and of the wave impact process. A sub-set of the experiments was numerically reproduced, with the openFOAM modelling suite, to support and to extend the experimental results. The results confirmed the link between the air content, the shape and the magnitude of the pressures according to the breaker type, already observed for larger-scale experiments.

2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


2019 ◽  
Vol 867 ◽  
pp. 146-194 ◽  
Author(s):  
G. L. Richard ◽  
A. Duran ◽  
B. Fabrèges

We derive a two-dimensional depth-averaged model for coastal waves with both dispersive and dissipative effects. A tensor quantity called enstrophy models the subdepth large-scale turbulence, including its anisotropic character, and is a source of vorticity of the average flow. The small-scale turbulence is modelled through a turbulent-viscosity hypothesis. This fully nonlinear model has equivalent dispersive properties to the Green–Naghdi equations and is treated, both for the optimization of these properties and for the numerical resolution, with the same techniques which are used for the Green–Naghdi system. The model equations are solved with a discontinuous Galerkin discretization based on a decoupling between the hyperbolic and non-hydrostatic parts of the system. The predictions of the model are compared to experimental data in a wide range of physical conditions. Simulations were run in one-dimensional and two-dimensional cases, including run-up and run-down on beaches, non-trivial topographies, wave trains over a bar or propagation around an island or a reef. A very good agreement is reached in every cases, validating the predictive empirical laws for the parameters of the model. These comparisons confirm the efficiency of the present strategy, highlighting the enstrophy as a robust and reliable tool to describe wave breaking even in a two-dimensional context. Compared with existing depth-averaged models, this approach is numerically robust and adds more physical effects without significant increase in numerical complexity.


2017 ◽  
Vol 17 (5) ◽  
pp. 641-655 ◽  
Author(s):  
Xizeng Zhao ◽  
Yong Chen ◽  
Zhenhua Huang ◽  
Zijun Hu ◽  
Yangyang Gao

Abstract. There is a general lack of understanding of tsunami wave interaction with complex geographies, especially the process of inundation. Numerical simulations are performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of gentle submarine slopes and coastal cliffs, using an in-house code, a constrained interpolation profile (CIP)-based model. The model employs a high-order finite difference method, the CIP method, as the flow solver; utilizes a VOF-type method, the tangent of hyperbola for interface capturing/slope weighting (THINC/SW) scheme, to capture the free surface; and treats the solid boundary by an immersed boundary method. A series of incident waves are arranged to interact with varying coastal geographies. Numerical results are compared with experimental data and good agreement is obtained. The influences of gentle submarine slope, coastal cliff and incident wave height are discussed. It is found that the tsunami amplification factor varying with incident wave is affected by gradient of cliff slope, and the critical value is about 45°. The run-up on a toe-erosion cliff is smaller than that on a normal cliff. The run-up is also related to the length of a gentle submarine slope with a critical value of about 2.292 m in the present model for most cases. The impact pressure on the cliff is extremely large and concentrated, and the backflow effect is non-negligible. Results of our work are highly precise and helpful in inverting tsunami source and forecasting disaster.


Author(s):  
Murray Rudman ◽  
Paul Cleary ◽  
Justin Leontini ◽  
Matthew Sinnott ◽  
Mahesh Prakash

Full three-dimensional simulation of the impact of a rogue wave on a semi-submersible platform is undertaken using the Smoothed Particle Hydrodynamics (SPH) technique. Two different mooring configurations are considered: A Tension Leg Platform (TLP) system and a Taut Spread Mooring (TSM) system. It is seen that for a wave impact normal to the platform side, the heave and surge responses of the platform are significantly different for the two mooring systems. The TLP system undergoes large surge but comparatively smaller heave motions than the TSM system. The degree of pitch is very similar. The total tension in the mooring cables is approximately four times higher in the TSM system and exceeds the strength of the cables used in the simulation. SPH is seen to be an attractive alternative to standard methods for simulating the coupled interaction of highly non-linear breaking waves and structural motion.


2021 ◽  
Vol 9 (12) ◽  
pp. 1355
Author(s):  
Enjin Zhao ◽  
Lin Mu ◽  
Zhaoyang Hu ◽  
Xinqiang Wang ◽  
Junkai Sun ◽  
...  

Revetment elements and protective facilities on a breakwater can effectively weaken the impact of waves. In order to resist storm surges, there is a plan to build a breakwater on the northern shore of Meizhou Bay in Putian City, China. To better design it, considering different environmental conditions, physical and numerical experiments were carried out to accurately study the effects of the breakwater and its auxiliary structures on wave propagation. In the experiments, the influence of the wave type, initial water depth, and the structure of the fence plate are considered. The wave run-up and dissipation, the wave overtopping volume, and the structure stability are analyzed. The results indicate that the breakwater can effectively resist the wave impact, reduce the wave run-up and overtopping, and protect the rear buildings. In addition, under the same still water depth and significant wave height, the amount of overtopped water under regular waves is larger than that under irregular waves. With the increase of the still water depth and significant wave height, the overtopped water increases, which means that when the storm surge occurs, damage on the breakwater under the high tide level is greater than that under the low tide level. Besides, the fence plate can effectively dissipate energy and reduce the overtopping volume by generating eddy current in the cavity. Considering the stability and the energy dissipation capacity of the fence plate, it is suggested that a gap ratio of 50% is reasonable.


Author(s):  
Rameeza Moideen ◽  
Manasa Ranjan Behera ◽  
Arun Kamath ◽  
Hans Bihs

In the recent past, coastal bridges have been subjected to critical damage due to extreme wave attacks during natural calamities like storm surge and tsunami. Various numerical and experimental studies have suggested different empirical equations for wave impact on deck. However, they do not account the velocities of the wave type properly, which requires a detailed investigation to study the impact of extreme waves on decks. Solitary wave assumption is more suitable for shallow water waves, while the focused wave has been used widely to represent extreme waves. The present study aims to investigate the focused wave impact on coastal bridge deck using REEF3D (Bihs et al., 2016).


Author(s):  
Joseph Katz ◽  
CJ Beegle-Krause ◽  
Michel Boufadel ◽  
Marcelo Chamecki ◽  
Vijay John ◽  
...  

Abstract A series of GOMRI-sponsored experimental and computational studies have discovered, elucidated and quantified the impact of small-scale processes on the dispersion, transport and weathering of crude oil slicks and subsurface plumes. Physical interfacial phenomena occurring at micron-scales include the formation of particle-stabilized emulsions, penetration of particles into oil droplets, formation of compound water-containing oil droplets during plume breakup, and the mechanisms affecting the breakup of oil into micro-droplet by tip streaming resulting from the drastic reduction in interfacial tension upon introduction of dispersant. Efforts aimed at development targeted delivery of surfactants have introduced solvent-free halloysite nanotubes that can be filled with surfactants, and preferentially released at oil-water interface. Buoyant surfactant-based gels, which enhance their encounter rates with oil slicks and adhere to weathered oil have also been developed. Studies of oil-bacteria interactions during early phases of biodegradation and shown how the bacteria, some highly active, attach to the oil-water interfaces and form complex films. Clay-decorated droplets sequester these bacteria and promote the propagation of these biofilm. Long extracellular polymeric substance (EPS) streamers generated by these biofilms form connected networks involving multiple droplets and debris, as well as increase the drag on the oil droplets. At 0.01–10 m scales, the generation of subsurface and airborne crude oil droplets by breaking waves, subsurface plumes and raindrop impact have been quantified. For waves, premixing the oil with dispersant reduces the droplets sizes to micron- and submicron-scales, and changes the slope of their size distribution. Without dispersant, the droplet diameters can be predicted based on the turbulence scales. With dispersant, the droplets are much smaller than the turbulence scales owing to the abovementioned tip-streaming. Aerosolization of oil is caused both by the initial splash and by subsequent bubble bursting, as entrained bubbles rise to the surface. Introduction of dispersant increases the airborne nano-droplet concentration by orders of magnitude, raising health questions. Dispersant injection also reduces the size of droplets in subsurface plumes, affecting the subsequent dispersion of these plume by currents and turbulence. Advancements have also been made in modeling of dissolution of oil in plumes, as well as in applications of Large Eddy Simulations (LES) to model plumes containing oil droplets and gas bubbles. The new multiscale framework, which accounts for the droplet size distribution and mass diffusion, can simulate the near- and far-fields of plumes, and predict the effect of vertical mixing promoted by turbulence on the transport of dispersed oil.


Author(s):  
Vipin Chakkurunni Palliyalil ◽  
Panneer Selvam Rajamanickam ◽  
Mayilvahanan Alagan Chella ◽  
Vijaya Kumar Govindasamy

The main objective of the paper is to investigate wave impact forces from breaking waves on a monopile substructure for offshore wind turbine in shallow waters. This study examines the load assessment parameters relevant for breaking wave forces on a vertical circular cylinder subjected to breaking waves. Experiments are conducted in a shallow water flume and the wave generation is based on piston type wave maker. The experiments are performed with a vertical circular cylinder with diameter, D = 0.20m which represents a monopile substructure for offshore wind turbines with regular waves of frequencies around 0.8Hz. The experimental setup consists of a 1/10 slope followed by a horizontal bed portion with a water depth of 0.8m. Plunging breaking waves are generated and free surface elevations are measured at different locations along the wave tank from wave paddle to the cylinder in order to find the breaking characteristics. Wave impact pressures are measured on the cylinder at eight different vertical positions along the height of the cylinder under breaking waves for different environmental conditions. The wave impact pressures and wave surface elevations in the vicinity of the cylinder during the impact for three different wave conditions are presented and discussed.


1976 ◽  
Vol 1 (15) ◽  
pp. 149 ◽  
Author(s):  
A. Fuhrboter ◽  
H.H. Dette ◽  
J. Grune

Damages on seadykes and revetments are mainly caused by wave impacts due to breaking waves. These impact forces act on small areas for a very short time and cause crater-like formations, when the forces are transmitted instantaneously to the side-walls of cracks in the cover of dykes or through joints into and below revetments. In this paper the results of investigations on impact forces are presented. A comparison of field data and laboratory data proves considerable differences, which must be explained mainly by the different air entrapment for prototype and small-scale conditions in the breaking waves. Both the data from field and small-scale model emphasize, that the slope of the dyke or revetment is responsible at first for frequency and magnitude of the impact forces. Furthermore the effect of impact forces is demonstrated by the results of investigations on the stability of stone revetments with joints.


2020 ◽  
Vol 12 (24) ◽  
pp. 4159
Author(s):  
Irina A. Sergievskaya ◽  
Stanislav A. Ermakov ◽  
Aleksey V. Ermoshkin ◽  
Ivan A. Kapustin ◽  
Olga V. Shomina ◽  
...  

The study of the microwave scattering mechanisms of the sea surface is extremely important for the development of radar sensing methods. Some time ago, Bragg (resonance) scattering of electromagnetic waves from the sea surface was proposed as the main mechanism of radar backscattering at moderate incidence angles of microwaves. However, it has been recently confirmed that Bragg scattering is often unable to correctly explain observational data and that some other physical mechanisms should be taken into consideration. The newly introduced additional scattering mechanism was characterized as non-polarized, or non-Bragg scattering, from quasi-specular facets appearing due to breaking wave crests, the latter usually occurring in moderate and strong winds. In this paper, it was determined experimentally that such non-polarized radar backscattering appeared not only for rough sea conditions in which wave crests strongly break and “white caps” occur, but also at very low wind velocities close to their threshold values for the wave generation process. The experiments were performed using two polarized Doppler radars. The experiments demonstrated that a polarization ratio, which characterizes relative contributions of non-polarized and Bragg components to the total backscatter, changed slightly with wind velocity and wind direction. Detailed analysis of radar Doppler shifts revealed two types of scatterers responsible for the non-polarized component. One type of scatterer, moving with the velocities of decimeter-scale wind waves, determined radar backscattering at low winds. We identified these scatterers as “microbreakers” and related them to nonlinear features in the profile of decimeter-scale waves, like bulges, toes and parasitic capillary ripples. The scatterers of the second type were associated with strong breaking, moved with the phase velocities of meter-scale breaking waves and appeared at moderate winds additionally to the “microbreakers”. Along with strong breakers, the impact of microbreaking in non-polarized backscattering at moderate winds remained significant; specifically the microbreakers were found to be responsible for about half of the non-polarized component of the radar return. The presence of surfactant films on the sea surface led to a significant suppression of the small-scale non-Bragg scattering and practically did not change the non-Bragg scatterer speed. This effect was explained by the fact that the nonlinear structures associated with dm-scale waves were strongly reduced in the presence of a film due to the cascade mechanism, even if the reduction of the amplitude of dm waves was weak. At the same time, the velocities of non-Bragg scatterers remained practically the same as in non-slick areas since the phase velocity of dm waves was not affected by the film.


Sign in / Sign up

Export Citation Format

Share Document