scholarly journals Industrial Activities and Heavy Metal Pollution: Assessment of Concentration of Zn, Cu, Cd Cr and, Pb in Soil Samples around Dangote Cement Factory Kogi State, Nigeria

Author(s):  
Sani Daniel Eneji ◽  
Matthew Chijioke Apeh ◽  
Enyojo Samson Okwute ◽  
Alowakennu Micheal ◽  
Kayode Ibrahim Fesomade

This study aims at determining the concentration of heavy metal contaminants in the soil around Dangote cement factory Kogi State, Nigeria. It also seeks to understand the relationship between the heavy metals and the level of concentration with respect to distance and direction as well as the ecological risk it poses. The monitoring and assessment of soil pollution have over the years become a very important area of study due to the significant threat it poses to the food web. A total of 33 soil samples were collected in the Northern, Eastern and Western axis within a radius of 4km of Dangote cement factory at a depth of 0-15cm using a stainless steel auger. The contamination factor indices for Cr and Cu show moderate pollution across all the samples collected from different axis at a different distance from the factory. Zn also pose a moderate pollution across the samples except for WK4 and NK4 where it is in a low level of contamination. The geo-accumulation indices for Pb and Cr show unpolluted to moderately polluted across all samples at different locations expect for sample location EK4. The results of the ecological risk assessment revealed that Cd poses the highest ecological risk of all the five heavy metals investigated.

2021 ◽  
Vol 13 (11) ◽  
pp. 6141
Author(s):  
Despina-Maria Bordean ◽  
Luminita Pirvulescu ◽  
Mariana-Atena Poiana ◽  
Ersilia Alexa ◽  
Antoanela Cozma ◽  
...  

The adoption of sustainable waste management strategies is a challenge faced by most European countries, mainly due to the need to generate less waste and replace landfills with new methods of waste treatment, associated with increases in the separate collection of waste and recycling rates. This paper highlights the significance of environmental legislation regarding waste removal to protect ecosystems. The aim was to predict ecological responses to heavy metals in soil exposed to hazardous waste and to identify environmental hazards in landfills, small illegal waste dumps, and litter, in addition to identifying if heavy metal accumulation in the investigated soil samples showed a single or cumulative risk. This is an innovative method to predict the ecological risk generated by hazardous waste landfills. The assessment of ecological risks was based on the evaluation of a heavy metal soil contamination factor, pollution index of soil loadings, a geo-accumulation index for heavy metals, and potential ecological risk. The current study is also the first to attempt to identify the dimension of risk based on the type of waste deposit (landfill, small illegal waste dump, and litter) and to identify potential patterns. The geological index corresponding to cadmium Igeo(Cd) showed heavy contamination in the soil samples from the landfill and moderate contamination for those from the illegal waste dumps. These findings indicate that soil contamination is influenced by contamination time, anthropogenic processes, and a history of industrial activity, and not only by waste composition and storage. The present study shows that cadmium might be considered a latent fingerprint for waste disposal, which is correlated to the industrialization level and rehabilitation procedures.


2021 ◽  
Author(s):  
Bingyan Jin ◽  
Jinling Wang ◽  
Wei Lou ◽  
Liren Wang ◽  
Jinlong Xu ◽  
...  

Abstract Rivers in urban environments are significant components of their ecosystems but remain under threat of pollution from unchecked discharges of industrial sewage and domestic wastewater. Such river pollution, particularly over the longer term involving heavy metals, is an issue of worldwide concern regarding risks to the ecological environment and human health. In this study, we investigate the long-term pollution characteristics of the Huafei River, an important urban river in Kaifeng, China. River sedimentary samples were analyzed, assessing the degree and ecological risk of heavy metal pollution using the geo-accumulation index and potential ecological risk index methods; whilst Pearson’s correlation, principal component, and cluster analyses were used to identify the sources of pollution. The results show that heavy metal concentrations are significantly higher than their corresponding fluvo-aquic soil background values in China, and the geo-accumulation indexes indicate, that of the 8 heavy metals identified, Hg is most prevalent, followed in sequence by Cd > Zn > Cu > Pb > Ni > As > Cr. The potential ecological risk index of the Huafei river is very high, with the potential ecological risk intensity highest in the midstream and downstream sections where it is recommended that pollution control is carried out, especially concerning Hg and Cd. Long-term sequence analysis indicates that Cu and Pb dropped sharply from 1998 to 2017, but rebounded in 2019, and that Zn shows a continuous decreasing trend. Four main sources for the heavy metal contaminants were identified: Cr, Cu, Ni, Pb, Zn and Hg derived mainly from industrial activities, traffic sources and natural sources; Cd originated mainly from industrial and agricultural activities; whilst As was mainly associated with industrial activities. It is anticipated that the findings of this study will provide theoretical references for the effective control and scientific management of heavy metal pollution in the Huafei River and its surrounding areas.


2021 ◽  
Author(s):  
Bingyan Jin ◽  
Jinling Wang ◽  
Wei Lou ◽  
Liren Wang ◽  
Jinlong Xu ◽  
...  

Abstract Rivers in urban environments are significant components of their ecosystems, but remain under threat of pollution from unchecked discharges of industrial sewage and domestic waste water. Such river pollution, particularly over the longer term involving heavy metals, is an issue of worldwide concern regarding risks to the ecological environment and human health. In this study, we investigate the long-term pollution characteristics of the Huafei River, an important urban river in Kaifeng, China. River sedimentary samples were analyzed, assessing the degree and ecological risk of heavy metal pollution using the geo-accumulation index and potential ecological risk index methods; whilst Pearson’s correlation, principal component, and cluster analyses were used to identify the sources of pollution. The results show that heavy metal concentrations are significantly higher than their corresponding fluvo-aquic soil background values in China, and the geo-accumulation indexes indicate that of the 8 heavy metals identified, Hg is most prevalent, followed in sequence by Cd>Zn>Cu>Pb>Ni>As>Cr. The potential ecological risk index of the Huafei river is extremely strong, with the potential ecological risk intensity highest in the midstream and downstream sections where it is recommended that pollution control is carried out, especially concerning Hg and Cd. Long-term sequence analysis indicates that Cu and Pb dropped sharply from 1998 to 2017, but rebounded in 2019, and that Zn shows a continuous decreasing trend. Four main sources for the heavy metal contaminants were identified: Cr, Cu, Ni, Pb, Zn and Hg derived mainly from industrial activities, traffic sources and natural sources; Cd originated mainly from industrial and agricultural activities; whilst As was mainly associated with industrial activities. It is anticipated that the findings of this study will provide theoretical references for the effective control and scientific management of heavy metal pollution in Huafei River and its surrounding areas.


Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait


2021 ◽  
Vol 306 ◽  
pp. 04013
Author(s):  
Triyani Dewi ◽  
Edhi Martono ◽  
Eko Hanudin ◽  
Rika Harini

Monitoring and assessment of heavy metal concentrations in shallot fields are needed to evaluate the potential risk of contamination due to heavy metals. This study aims to define the status of heavy metal contamination in shallot fields using contamination indices. A total of 184 soil samples (0-20 cm) were taken from shallot fields in Brebes Regency, Central Java. The soil samples were analyzed for the concentration of five heavy metals (Cd, Pb, Ni, Cr, and Co) with HNO3 and HClO4 extracts and measured using AAS. Assessment of the status of heavy metals contamination in the soil using contaminant factor (CF), geo-accumulation index (I-geo), and pollution load index (PLI). The mean concentration in shallot fields showed the following order Cr > Ni > Pb > Co > Cd and the concentration were still below critical limit values. Four metals are Pb, Cr, Co, and Ni are low contamination (CF<1), while Cd is considerable until very high contamination factor. Based on I-geo values, shallot fields are practically uncontaminated of Pb, Co, Ni, and Cr (I-geo<1), meanwhile the status of Cd is uncontaminated to moderately contaminated (0<I-geo<1). Generally, the shallot fields in Brebes Regency, Central Java is unpolluted with five metals (PLI<1).


2021 ◽  
Vol 52 (4) ◽  
pp. 868-875
Author(s):  
Aweez & et al.

The aim of this study was to application of some single and integrated index equation to assess heavy metal in different soil within Erbil governorate. The 15 different locations (Bahare new, Newroz, New Hawler, Hesarok, Azadi1, Zen city, Atconz city, Pank village, Binaslawa, Darato, Qushtapa, Shaways, Kasnazan, Bahirka, Pirzin) were specifically selected to identify the effects of traffic activities on soil properties. Different heavy metal distribution patterns (As, Cd, Cu, Cr and Zn) were determined from distance 5, 25, 50m roadside. Soil pollution was assessed using many indices including: contamination factor (CF), degree of contamination (Cdeg), Ecological Risk Factor and Potential Ecological Risk Index.The results showed that concentrations of As, Cd, Cr, Cu, and Zn in street dust ranged from (4.60, 1.80, 217.83, 62.14 and 215.18) mg.kg-1 which recorded in Qushtapa, Kasnazan, Atconze city, Hasarok5 and Zen city respectively. The contamination factor  and degree of contamination of  the trace elements As, Cd, Cr, Cu ,and Zn of soil samples was indicating considerable contamination factor for Qushtapa moderate contamination factor for Kasnazan, while Atconze city, Hasarok5, Zen city showed very high contamination factor, while degree of contamination considerable low degree of contamination. According to the ecological risk factor and RI results Qwshtapa was indicate as low potential ecological risk, Kasnazan had moderate potential ecological risk while Hasarok5 and Zen city considerable high potential ecological risk, except Atconze considerable very high ecological risk, on the other hand for RI index shown considerable very high ecological risk recorded in Hasarok 5 soil samples.


Author(s):  
Oguh C. Egwu ◽  
Uzoefuna C. Casmir ◽  
Ugwu C. Victor ◽  
Ubani C. Samuel ◽  
Musa A. Dickson ◽  
...  

The study investigate a series of selected heavy metal pollution of soil, the extent of their uptake by Telfairia occidentalis and Amaranthus cruentus as well as their ecological risk around dumpsite in Chanchaga Minna, Niger State, Nigeria. Soil samples were collected at 15 cm depth with the aid of soil auger and vegetable samples were collected from dumpsite and other samples with no activities served as control. The soil samples were collected at random and their physicochemical parameters such as pH, total nitrogen, total phosphorus, organic matter, total carbon and exchangeable cations (i.e., K+, Mg2+ and Na+) using a standard method and concentrations of the heavy metals in soils and vegetables, As, Cd, Cr, Cu, Hg and Pb were analyzed using flame Atomic Absorption Spectrometer (AAS). The ecological health risk assessment from the consumption of these vegetables was calculated using standard methods. The result showed a significant (p-value) increase of AC and TO in test soil samples relative to the control soils. The pH of the soil in dumpsite and control site was 5.93, and 7.35 respectively. Mean concentrations of As, Cd, Cr, Cu, Hg and Pb in the dump site were 6.35, 4.84, 6.67, 7.35, 5.72 and 4.96 mg/kg while the control site were 1.18, 0.28, 1.26, 6.83, 1.19 and 3.54 mg/kg respectively which was below the WHO/FAO limits of As (20), Cd (3.0), Cr (100), Cu (100), Hg (2.00) and Pb (50 mg/kg) for soil. The concentrations of As, Cd, Cr, Cu, Hg and Pb recorded in AC dump site were As (6.13), Cd (3.67), Cr (5.37), Cu (4.28), Hg (3.46), and Pb (4.52) and in TO As (5.67), Cd (3.13), Cr (4.67), Cu (3.65), Hg (3.19) and Pb (4.27 mg/kg) which were above the WHO/FAO permissible limits (0.5, 0.20, 0.3, 3.0, 0.1 and 0.3 mg/kg) respectively for edible vegetable. The concentrations of heavy metals in soils and vegetables from the dumpsite soil were significant (p < 0.05) from the controls. The bioaccumulation factor (BAF) for the vegetable showed that they exclude the element from soil. The Hazard Quotient (HQ) and Hazard index (HI) show that there is no harmful effect since the values obtain were not greater than >1. But continuous consumption can accumulate in the food chain especially for children. This study showed that the soils and vegetables within the vicinity of the dumpsites were polluted by heavy metals which can pose health risk. The study also calls for proper waste management practices and policy implementation.


2017 ◽  
Vol 14 (3-4) ◽  
Author(s):  
Nusreta Djonlagic

In this study the results of a 15-year long monitoring survey on heavy metals in water at Lake Modrac were assessed using pollution indices of heavy metals, such as Heavy metal pollution index HPI, Heavy metal evaluation index HEI and the Degree of contamination CD. The results of the survey on heavy metal pollution of sediment conducted in 2015 were used as input data for the following pollution indices: Concentration factor , Pollution load index PLI, Enrichment factor EF, Index of geo-accumulation Igeo, Ecological risk factor , Potential ecological risk index to the water-body, RI. The results showed a good correlation and the lake sediment was characterized as polluted. Enrichment factors and indices of geo-accumulation of heavy metals were indicated as very high enriched in the sediment, and have been identified as an anthropogenic source of pollution. Cumulative presence in the sediment is assessed through the pollution index, RI, and has been assessed as moderate ecological risk to the lake water-body. The application of pollution indices presents a valuable tool in assessing the long-term pollution status of Lake Modrac.


2019 ◽  
Vol 11 (12) ◽  
pp. 1464 ◽  
Author(s):  
Zhenhua Liu ◽  
Ying Lu ◽  
Yiping Peng ◽  
Li Zhao ◽  
Guangxing Wang ◽  
...  

Quickly and efficiently monitoring soil heavy metal content is crucial for protecting the natural environment and for human health. Estimating heavy metal content in soils using hyperspectral data is a cost-efficient method but challenging due to the effects of complex landscapes and soil properties. One of the challenges is how to make a lab-derived model based on soil samples applicable to mapping the contents of heavy metals in soil using air-borne or space-borne hyperspectral imagery at a regional scale. For this purpose, our study proposed a novel method using hyperspectral data from soil samples and the HuanJing-1A (HJ-1A) HyperSpectral Imager (HSI). In this method, estimation models were first developed using optimal relevant spectral variables from dry soil spectral reflectance (DSSR) data and field observations of soil heavy metal content. The relationship of the ratio of DSSR to moisture soil spectral reflectance (MSSR) with soil moisture content was then derived, which built up the linkage of DSSR with MSSR and provided the potential of applying the models developed in the laboratory to map soil heavy metal content at a regional scale using hyperspectral imagery. The optimal relevant spectral variables were obtained by combining the Boruta algorithm with a stepwise regression and variance inflation factor. This method was developed, validated, and applied to estimate the content of heavy metals in soil (As, Cd, and Hg) in Guangdong, China, and the Conghua district of Guangzhou city. The results showed that based on the validation datasets, the content of Cd could be reliably estimated and mapped by the proposed method, with relative root mean square error (RMSE) values of 17.41% for the point measurements of soil samples from Guangdong province and 17.10% for the Conghua district at the regional scale, while the content of heavy metals As and Hg in soil were relatively difficult to predict with the relative RMSE values of 32.27% and 28.72% at the soil sample level and 51.55% and 36.34% at the regional scale. Moreover, the relationship of the DSSR/MSSR ratio with soil moisture content varied greatly before the wavelength of 1029 nm and became stable after that, which linked DSSR with MSSR and provided the possibility of applying the DSSR-based models to map the soil heavy metal content at the regional scale using the HJ-1A images. In addition, it was found that overall there were only a few soil samples with the content of heavy metals exceeding the health standards in Guangdong province, while in Conghua the seriously polluted areas were mainly distributed in the cities and croplands. This study implies that the new approach provides the potential to map the content of heavy metals in soil, but the estimation model of Cd was more accurate than those of As and Hg.


2011 ◽  
Vol 137 ◽  
pp. 262-268 ◽  
Author(s):  
Guo Tao Liu ◽  
Xiao Yan Zheng ◽  
Xu Ya Peng ◽  
Jian Hua Li

The concentrations of heavy metals (Cu, Zn, Pb, Cd, Ni, Cr, As) in the surface sediment of Liangtan River were determined by using atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS), and the toxic effects and sediment pollution assessment were conducted systematically by using Sediment Quality Guidelines (SQG), Hakanson Potential Ecological Risk Index. Moreover, the underlying source of heavy metal was analyzed. The results indicated that the concentrations of Cu, Zn, Pb, Cd, Ni, Cr, As were 29.4-158.1, 40.2-291.3, 23.4-148.2, 0.01-0.79, 6.4-106.2, 17.9-170.6, 1.3-45.1mg/kg respectively. Base on the SQG, besides Cd concentrations of few sampling sites were above the threshold effects level (TEL), the rest heavy metal concentrations of most sampling sites were all between TEL and the probable effects level (PEL), and biological toxicity effects may take place, especially Baishiyi, Hangu and Huilongba, harmful biological toxicity effects may frequently take place. Compared to background values of soil heavy metals in the Three Gorges Reservoir Region, the heavy metals in Liangtan River sediments showed higher ecological risk, and the ecological risk of the heavy metals, arranged from the highest to lowest pollution degree, was as follows Cd, As, Cu, Pb, Ni, Zn, Cr.


Sign in / Sign up

Export Citation Format

Share Document