Decision Tree-based Machine Learning Algorithms to Classify Rice Plant Diseases: A Recent Study

Author(s):  
R. Sahith ◽  
P. Vijaya Pal Reddy ◽  
Satyanarayana Nimmala

Rice is one of the most important foods on earth for human beings. India and China are two countries in the world mostly depend on rice. The output of this crop depends on the many parameters such as soil, water supply, pesticides used, time duration, and infected diseases. Rice Plant Disease (RPD) is one of the important factors that decrease the quantity and quality of rice. Identifying the type of rice plant disease and taking corrective action against the disease in time is always challenging for the farmers. Although the rice plant is affected by many diseases, Bacterial Leaf Blight (BLB), Brown Spot (BS), and Leaf Smut (LS) are major diseases. Identification of this disease is really challenging because the infected leaf has to be processed by the human eye. So in this paper, we focused on machine learning techniques to identify and classify the RPD. We have collected infected rice plant data from the UCI Machine Learning repository. The data set consists of 120 images of infected rice plants in which 40 images are BLB, 40 are BS, and 40 are LS. Experiments are conducted using Decision tree-based machine learning algorithms such as RandomForest, REPTree, and J48. In order to extract the numerical features from the infected images, we have used ColourLayoutFilter supported by WEKA. Experimental analysis is done using 65% data for training and 35% data for testing. The experiments unfold that the Random Forest algorithm is exceptional in predicting RPD.


2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 126-127
Author(s):  
Lucas S Lopes ◽  
Christine F Baes ◽  
Dan Tulpan ◽  
Luis Artur Loyola Chardulo ◽  
Otavio Machado Neto ◽  
...  

Abstract The aim of this project is to compare some of the state-of-the-art machine learning algorithms on the classification of steers finished in feedlots based on performance, carcass and meat quality traits. The precise classification of animals allows for fast, real-time decision making in animal food industry, such as culling or retention of herd animals. Beef production presents high variability in its numerous carcass and beef quality traits. Machine learning algorithms and software provide an opportunity to evaluate the interactions between traits to better classify animals. Four different treatment levels of wet distiller’s grain were applied to 97 Angus-Nellore animals and used as features for the classification problem. The C4.5 decision tree, Naïve Bayes (NB), Random Forest (RF) and Multilayer Perceptron (MLP) Artificial Neural Network algorithms were used to predict and classify the animals based on recorded traits measurements, which include initial and final weights, sheer force and meat color. The top performing classifier was the C4.5 decision tree algorithm with a classification accuracy of 96.90%, while the RF, the MLP and NB classifiers had accuracies of 55.67%, 39.17% and 29.89% respectively. We observed that the final decision tree model constructed with C4.5 selected only the dry matter intake (DMI) feature as a differentiator. When DMI was removed, no other feature or combination of features was sufficiently strong to provide good prediction accuracies for any of the classifiers. We plan to investigate in a follow-up study on a significantly larger sample size, the reasons behind DMI being a more relevant parameter than the other measurements.


2021 ◽  
Vol 11 (4) ◽  
pp. 251-264
Author(s):  
Radhika Bhagwat ◽  
Yogesh Dandawate

Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images.


2019 ◽  
Vol 1 (1) ◽  
pp. 384-399 ◽  
Author(s):  
Thais de Toledo ◽  
Nunzio Torrisi

The Distributed Network Protocol (DNP3) is predominately used by the electric utility industry and, consequently, in smart grids. The Peekaboo attack was created to compromise DNP3 traffic, in which a man-in-the-middle on a communication link can capture and drop selected encrypted DNP3 messages by using support vector machine learning algorithms. The communication networks of smart grids are a important part of their infrastructure, so it is of critical importance to keep this communication secure and reliable. The main contribution of this paper is to compare the use of machine learning techniques to classify messages of the same protocol exchanged in encrypted tunnels. The study considers four simulated cases of encrypted DNP3 traffic scenarios and four different supervised machine learning algorithms: Decision tree, nearest-neighbor, support vector machine, and naive Bayes. The results obtained show that it is possible to extend a Peekaboo attack over multiple substations, using a decision tree learning algorithm, and to gather significant information from a system that communicates using encrypted DNP3 traffic.


2019 ◽  
Vol 16 (4) ◽  
pp. 155-169
Author(s):  
N. A. Azeez ◽  
A. A. Ajayi

Since the invention of Information and Communication Technology (ICT), there has been a great shift from the erstwhile traditional approach of handling information across the globe to the usage of this innovation. The application of this initiative cut across almost all areas of human endeavours. ICT is widely utilized in education and production sectors as well as in various financial institutions. It is of note that many people are using it genuinely to carry out their day to day activities while others are using it to perform nefarious activities at the detriment of other cyber users. According to several reports which are discussed in the introductory part of this work, millions of people have become victims of fake Uniform Resource Locators (URLs) sent to their mails by spammers. Financial institutions are not left out in the monumental loss recorded through this illicit act over the years. It is worth mentioning that, despite several approaches currently in place, none could confidently be confirmed to provide the best and reliable solution. According to several research findings reported in the literature, researchers have demonstrated how machine learning algorithms could be employed to verify and confirm compromised and fake URLs in the cyberspace. Inconsistencies have however been noticed in the researchers’ findings and also their corresponding results are not dependable based on the values obtained and conclusions drawn from them. Against this backdrop, the authors carried out a comparative analysis of three learning algorithms (Naïve Bayes, Decision Tree and Logistics Regression Model) for verification of compromised, suspicious and fake URLs and determine which is the best of all based on the metrics (F-Measure, Precision and Recall) used for evaluation. Based on the confusion metrics measurement, the result obtained shows that the Decision Tree (ID3) algorithm achieves the highest values for recall, precision and f-measure. It unarguably provides efficient and credible means of maximizing the detection of compromised and malicious URLs. Finally, for future work, authors are of the opinion that two or more supervised learning algorithms can be hybridized to form a single effective and more efficient algorithm for fake URLs verification.Keywords: Learning-algorithms, Forged-URL, Phoney-URL, performance-comparison


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1677
Author(s):  
Ersin Elbasi ◽  
Ahmet E. Topcu ◽  
Shinu Mathew

COVID-19 is a community-acquired infection with symptoms that resemble those of influenza and bacterial pneumonia. Creating an infection control policy involving isolation, disinfection of surfaces, and identification of contagions is crucial in eradicating such pandemics. Incorporating social distancing could also help stop the spread of community-acquired infections like COVID-19. Social distancing entails maintaining certain distances between people and reducing the frequency of contact between people. Meanwhile, a significant increase in the development of different Internet of Things (IoT) devices has been seen together with cyber-physical systems that connect with physical environments. Machine learning is strengthening current technologies by adding new approaches to quickly and correctly solve problems utilizing this surge of available IoT devices. We propose a new approach using machine learning algorithms for monitoring the risk of COVID-19 in public areas. Extracted features from IoT sensors are used as input for several machine learning algorithms such as decision tree, neural network, naïve Bayes classifier, support vector machine, and random forest to predict the risks of the COVID-19 pandemic and calculate the risk probability of public places. This research aims to find vulnerable populations and reduce the impact of the disease on certain groups using machine learning models. We build a model to calculate and predict the risk factors of populated areas. This model generates automated alerts for security authorities in the case of any abnormal detection. Experimental results show that we have high accuracy with random forest of 97.32%, with decision tree of 94.50%, and with the naïve Bayes classifier of 99.37%. These algorithms indicate great potential for crowd risk prediction in public areas.


Author(s):  
Jiarui Yin ◽  
Inikuro Afa Michael ◽  
Iduabo John Afa

Machine learning plays a key role in present day crime detection, analysis and prediction. The goal of this work is to propose methods for predicting crimes classified into different categories of severity. We implemented visualization and analysis of crime data statistics in recent years in the city of Boston. We then carried out a comparative study between two supervised learning algorithms, which are decision tree and random forest based on the accuracy and processing time of the models to make predictions using geographical and temporal information provided by splitting the data into training and test sets. The result shows that random forest as expected gives a better result by 1.54% more accuracy in comparison to decision tree, although this comes at a cost of at least 4.37 times the time consumed in processing. The study opens doors to application of similar supervised methods in crime data analytics and other fields of data science


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6928
Author(s):  
Łukasz Wojtecki ◽  
Sebastian Iwaszenko ◽  
Derek B. Apel ◽  
Tomasz Cichy

Rockburst is a dynamic rock mass failure occurring during underground mining under unfavorable stress conditions. The rockburst phenomenon concerns openings in different rocks and is generally correlated with high stress in the rock mass. As a result of rockburst, underground excavations lose their functionality, the infrastructure is damaged, and the working conditions become unsafe. Assessing rockburst hazards in underground excavations becomes particularly important with the increasing mining depth and the mining-induced stresses. Nowadays, rockburst risk prediction is based mainly on various indicators. However, some attempts have been made to apply machine learning algorithms for this purpose. For this article, we employed an extensive range of machine learning algorithms, e.g., an artificial neural network, decision tree, random forest, and gradient boosting, to estimate the rockburst risk in galleries in one of the deep hard coal mines in the Upper Silesian Coal Basin, Poland. With the use of these algorithms, we proposed rockburst risk prediction models. Neural network and decision tree models were most effective in assessing whether a rockburst occurred in an analyzed case, taking into account the average value of the recall parameter. In three randomly selected datasets, the artificial neural network models were able to identify all of the rockbursts.


2021 ◽  
Vol 11 (21) ◽  
pp. 10062
Author(s):  
Aimin Li ◽  
Meng Fan ◽  
Guangduo Qin ◽  
Youcheng Xu ◽  
Hailong Wang

Monitoring open water bodies accurately is important for assessing the role of ecosystem services in the context of human survival and climate change. There are many methods available for water body extraction based on remote sensing images, such as the normalized difference water index (NDWI), modified NDWI (MNDWI), and machine learning algorithms. Based on Landsat-8 remote sensing images, this study focuses on the effects of six machine learning algorithms and three threshold methods used to extract water bodies, evaluates the transfer performance of models applied to remote sensing images in different periods, and compares the differences among these models. The results are as follows. (1) Various algorithms require different numbers of samples to reach their optimal consequence. The logistic regression algorithm requires a minimum of 110 samples. As the number of samples increases, the order of the optimal model is support vector machine, neural network, random forest, decision tree, and XGBoost. (2) The accuracy evaluation performance of each machine learning on the test set cannot represent the local area performance. (3) When these models are directly applied to remote sensing images in different periods, the AUC indicators of each machine learning algorithm for three regions all show a significant decline, with a decrease range of 0.33–66.52%, and the differences among the different algorithm performances in the three areas are obvious. Generally, the decision tree algorithm has good transfer performance among the machine learning algorithms with area under curve (AUC) indexes of 0.790, 0.518, and 0.697 in the three areas, respectively, and the average value is 0.668. The Otsu threshold algorithm is the optimal among threshold methods, with AUC indexes of 0.970, 0.617, and 0.908 in the three regions respectively and an average AUC of 0.832.


Sign in / Sign up

Export Citation Format

Share Document