scholarly journals Biohardening of Tissue Cultured Banana Plantlets of cv. Ney Poovan for the Management of Fusarium wilt of Banana with Bacillus amyloliquefaciens (VB7) Triggers Defence Gene Products and Growth Promotion

Author(s):  
C. Y. Shalini Udaya ◽  
S. Nakkeeran ◽  
K. Soorianathasundaram

Fusarium wilt of banana is the most devastating disease caused by Fusarium oxysporum f.sp. cubense (Foc). In order to combat the early onset of Fusarium wilt disease, an experiment was carried out on biohardening of tissue cultured plantlets. Six bacterial endophytes were observed to inhibit the growth of Foc in vitro. Among the six bacterial endophytes, Bacillus amyloliquefaciens (VB7) inhibited mycelial growth of Foc to an extent of 70.58% over control. Further, these bacterial endophytes were used for biohardening of the tissue cultured banana plantlets cv. Ney Poovan (AB) during primary and secondary hardening stages. Among the bacterial endophytes, B. amyloliquefaciens was found to significantly enhance plant height, leaf production, root numbers and root length compared to untreated control. Activity of defense enzymes were  also enhanced and such increase in activity was observed to be to an  extent of 93.67% in peroxidase, 92.39% polyphenol oxidase, 97.60% phenylalanine ammonia lyase  and 26.23% in β-1, 3-glucanase defence enzymes in plants biohardened with B. amyloliquefaciens (VB7) over untreated control after inoculation of Foc. Tissue cultured plants of Ney Poovan biohardened with B. amyloliquefaciens   (VB7),   B.   paraconglomeratum   (YEB   PT2) and S. maltophilia (YEB RH2) were completely free from wilt incidence symptoms upto planting stage when challenged with Foc inoculum under pot culture conditions. As among these three endophytes, B. amyloliquefaciens (VB7) also influenced favourable growth promotion, it can serve as a potential biocontrol agent for management of Fusarium wilt of banana.

2016 ◽  
Vol 9 (2) ◽  
pp. 66
Author(s):  
Deden Sukmadjaja ◽  
Ragapadmi Purnamaningsih ◽  
Tri P. Priyatno

<p>Fusarium wilt of banana (Musa spp.) caused by<br />Fusarium oxysporum f. sp. cubense (Foc) is the most serious<br />problem faced in banana cultivation in terms of plant<br />productivity and fruit quality. Mutation breeding is one of the<br />alternative method that can be applied in producing new<br />banana cultivar. Mutants can be induced by chemical<br />mutagen such as ethyl methane sulfonate (EMS) followed by<br />in vitro selection and then evaluation of the mutants to<br />fusarium wilt disease in glasshouse and Foc infected field.<br />The aim of this research was obtained EMS induced and in<br />vitro selected mutants of banana var. Ambon Kuning and<br />evaluated Foc disease resistant clones in glasshouse and<br />Foc infected field. The first step to obtain the explants for<br />this research was initiation and formation of multiple bud<br />clumps (MBC) using MS basal media supplemented with 5,<br />10, and 20 mg/l of benzyladenin. Plant regeneration of MBC<br />was also studied by using MS media containing 0, 0.2, and 1<br />mg/l of benzyladenin. To induce mutagenesis, MBC was<br />soaked in 0.1, 0.3, and 0.5% (v/v) EMS for 1, 2, and 3 hours.<br />The assesment of resistant MBC mutants to Fusarium<br />phytotoxin was conducted by using fusaric acid (FA) as<br />selection agent in concentration of 30, 45, and 60 ppm.<br />Putative mutant plants produced by in vitro selection were<br />further tested using spore solution of Foc race 4 in<br />glasshouse. Meanwhile, Foc resistance assesment in the<br />infected field was conducted in Pasirkuda Experimental<br />Station, Bogor Agricultural University. The results showed<br />that MBC can be formed in MS basal media supplemented<br />with 10 or 20 mg/l benzyladenin. The EMS played a role in<br />obtaining mutants by producing 68 MBC putative mutants<br />tolerant to Foc based on FA selection. Further evaluation in<br />the glasshouse was obtained 64 Foc resistant plants from<br />391 putative mutants produced by in vitro selection.<br />Evaluation in the Foc infected field showed six clones<br />survived until generative phase (12 month of age).</p>


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3107 ◽  
Author(s):  
Raheem Shahzad ◽  
Abdul Latif Khan ◽  
Saqib Bilal ◽  
Sajjad Asaf ◽  
In-Jung Lee

Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophyticBacillus amyloliquefaciensRWL-1 against pathogenicFusarium oxysporumf. sp.lycopersici. The results revealed significant suppression of pathogenic fungal growth byBacillus amyloliquefaciensin vitro. Further to this, we inoculated tomato plants with RWL-1 andF. oxysporumf. sp.lycopersiciin the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared toF. oxysporumf. sp.lycopersiciinfected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser), and proline (Pro)) as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA) and higher amount of salicylic acid (SA) contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid) during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control ofF. oxysporumf. sp.lycopersiciin an eco-friendly way.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Carmen Sanjuana Delgado-Ramírez ◽  
Rufina Hernández-Martínez ◽  
Edgardo Sepúlveda

Plant growth-promoting rhizobacteria are often utilized to improve crop health and productivity. Nevertheless, their positive effects can be hindered if they fail to withstand the environmental and ecological conditions of the regions where they are applied. An alternative approach to circumvent this problem is a tailored selection of bacteria for specific agricultural systems. In this work, we evaluated the plant growth promoting and pathogen inhibition activity of rhizobacteria obtained from the rhizosphere of Mariola (Solanum hindsianum), an endemic shrub from Baja California. Eight strains were capable of inhibiting Fusarium oxysporum in vitro, and thirteen strains were found to possess three or more plant-growth-promotion traits. Molecular identification of these strains, using 16 s rRNA partial sequences, identified them as belonging to the genera Arthrobacter, Bacillus, Paenibacillus, Pseudomonas, and Streptomyces. Finally, the effect of selected plant growth-promoting rhizobacteria (PGPR) strains on the growth and suppression of Fusarium wilt in tomato was evaluated. Results showed that these strains improved tomato plants growth under greenhouse conditions and reduced Fusarium wilt effects, as reflected in several variables such as length and weight of roots and stem. This work highlights the potential of native plants related to regionally important crops as a valuable source of beneficial bacteria.


2021 ◽  
Vol 7 (11) ◽  
pp. 946
Author(s):  
Walter Ocimati ◽  
Evans Were ◽  
Anthony Fredrick Tazuba ◽  
Miguel Dita ◽  
Si-Jun Zheng ◽  
...  

A range of basidiomycetes including the edible mushroom Pleurotus ostreatus (Po) can suppress plant pathogens such as Fusarium spp. With the current increase in production and consumption of Po in Uganda, the spent Po substrate (SPoS) could be an alternative to manage Fusarium wilt of banana (FWB), caused by the soil borne pathogen Fusarium oxysporum f. sp. cubense, race 1 (Foc). This study determined the potential of SPoS to inhibit Foc in vitro and in potted plants. In vitro studies confirmed suppression of Foc in pure co-culture (Po vs. Foc) assays and media amended with different concentrations (0% to 50% w/v) of un-sterilized SPoS filtrates. Foc growth in the sterile SPoS filtrate was comparable to the water control, suggesting possible roles of biotic or thermolabile components of the SPoS. To further verify the suppressive effects of SPoS, pot experiments were carried out with a resistant (‘Mbwazirume’, AAA) and susceptible (‘Sukali Ndizi’, AAB) banana cultivar using both artificially and naturally infested soils. Independent of the inoculation method, SPoS significantly reduced the severity of FWB in pot experiments. Susceptible cultivar ‘Sukali Ndizi’ growing in substrates amended with SPoS showed lower (1.25) corm damage (Scale 0–5) than the un-amended control (3.75). No corm damage was observed in uninoculated controls. The resistant cultivar ‘Mbwazirume’, showed slight (0.25) corm damage only in the Foc-inoculated plants without SPoS. These findings suggest that SPoS could be used as part of the management practices to reduce the impact of FWB.


2021 ◽  
pp. 466-478
Author(s):  
Mileidy Cruz Martín ◽  
Liliana Leyva ◽  
Mayra Acosta Suárez ◽  
Tatiana Pichardo ◽  
Idalmis Bermúdez Caraballoso ◽  
...  

Introduction. Due to the absence of totally effective either economically viable chemical agents for the control of Fusarium wilt, the use of antagonistic microorganisms is of great interest since it could represent a more economically and ecologically sustainable alternative. Objective. To analyze the antifungal effect of the Bacillus amyloliquefaciens CCIBP-A5 strain against Fusarium oxysporum. Materials and methods. The work was carried out in the Laboratory of Applied Microbiology of the Instituto de Biotecnología de las Plantas, Cuba, between September 2017 and June, 2018. The in vitro and in vivo antifungal activity of its culture filtrate and cell against F. oxysporum has been assayed. Results. The results indicated that the metabolites present in the culture filtrate of B. amyloliquefaciens CCIBP-A5 significantly influenced the growth and morphology of the mycelium and the conidia. They also caused oxidative damage to the lipid molecules of F. oxysporum. In addition, this strain showed inhibitory effects on the development of the disease under controlled conditions. These aspects are key when selecting a bacterial candidate as a biological control agent. Conclusions. The results showed that the B. amyloliquefaciens CCIBP-A5 strain, isolated from Musa sp., had an in vitro antifungal effect against the vegetative and reproductive structures of Foc race 1 as well as on the Musa spp.-F. oxysporum interaction. This strain is suggested for the development of a bioproduct for Fusarium wilt management.


2019 ◽  
Vol 31 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Saman Aslam ◽  
Muhammad U. Ghazanfar ◽  
Nida Munir ◽  
Muhammad I. Hamid

Fusarium wilt of pea is an ubiquitous disease of pea in all peas growing areas. The disease is able to cause hundred percent yield losses under favorable conditions. Multiple management approaches are in use to control this soil pathogen on different growth stages of crop, in which chemical control is providing quick response. This study was designed to evaluate different fungicides and their application methods to inhibit the pathogenic growth and development. Moreover, minimum effective concentration of fungicides against wilt disease of pea was also evaluated. Both in vitro and in vivo bio assays were designed to test the fungicidal efficacy. During in vitro assay minimum effective concentration of 10ppm from four fungicides Thiophanate methyl, Acrobat, Matalyxal and Fosetyl aluminium was evaluated. In green house assay flooding method was proved more affective against wilt disease of pea. The fungicides application showed significantly lower disease incidence as compared to untreated control. Acrobate provided more appreciable response to decrease disease incidence during flooding method and Fosetyl aluminum showed good efficiency in inhibition of pathogen during seed treatment and spraying method. Plant growth parameters were also measured and significant improvement was observed in growth response of treated plants as compared to untreated control. The results showed that fungicides can provide efficient control measures against pea wilt disease by utilizing appropriate application method.


2012 ◽  
Vol 49 (4) ◽  
pp. 435-446 ◽  
Author(s):  
Beibei Wang ◽  
Jun Yuan ◽  
Jian Zhang ◽  
Zongzhuan Shen ◽  
Maoxing Zhang ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Luis Gabriel Cueva-Yesquén ◽  
Marcela Cristina Goulart ◽  
Derlene Attili de Angelis ◽  
Marcos Nopper Alves ◽  
Fabiana Fantinatti-Garboggini

Bacteria exhibiting beneficial traits like increasing the bioavailability of essential nutrients and modulating hormone levels in plants are known as plant growth promoting (PGP) bacteria. The occurrence of this specific group of bacteria in the endophytic environment may reflect the decisive role they play in a particular condition. This study aimed to determine the taxonomical diversity of the culturable bacterial endophytes, isolated in the vegetative stage of passionflower (Passiflora incarnata), and assess its potential to promote plant growth by phenotypic and genotypic approaches. The sequencing and phylogenetic analysis of the 16S rRNA gene allowed us to classify 58 bacterial endophytes into nine genera. Bacillus (70.7%) was the most dominant genus, followed by Pseudomonas (8.6%) and Pantoea (6.9%). A few isolates belonged to Rhodococcus and Paenibacillus, whereas the genera Lysinibacillus, Microvirga, Xanthomonas, and Leclercia were represented by only one isolate. The strains were tested for nitrogen fixation, phosphate solubilization, indole-acetic-acid synthesis, and siderophore production. Moreover, PGP related genes (nifH, ipdC, asb, and AcPho) were detected by PCR-based screening. Most of the isolates (94.8%) displayed a potential for at least one of the PGP traits tested by biochemical assays or PCR-based screening. Nine strains were selected based on results from both approaches and were evaluated for boosting the Cape gooseberry (Physalis peruviana) germination and growth. All tested isolates improved germination in vitro, and the majority (78%) increased growth parameters in vivo. The results suggested that most of culturable bacteria inhabiting P. incarnata in the vegetative stage could be used as probiotics for agricultural systems. Besides, their occurrence may be associated with specific physiological needs typical of this development stage.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2536
Author(s):  
Magdi A. A. Mousa ◽  
Kamal A. M. Abo-Elyousr ◽  
Ahmed M. K. Abdel Alal ◽  
Nouf Owdah Alshareef

The most important disease of tomato is Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL). To control this disease, this study examined the combined use of bacterial bioagents and peppermint oil (PO). Seven bacterial isolates were collected from tomato plant rhizospheres and tested in vitro against FOL. The highest growth inhibition against FOL was shown by isolate No.3. This isolate was identified using 16S rRNA sequencing gene as Bacillus amyloliquefaciens (BA). Peppermint oil tested at different concentrations (1, 2, and 3%) against FOL mycelial growth in vitro showed the highest inhibition at 3%. The effects of BA, PO, and BA + PO in vitro on the seed germination and seedling vigor index of the tomato cv. ‘Tala F1’ was also tested. All “BA, PO, and BA + PO” treatments increased the percentage of germinated seeds and seedlings’ main shoots and root length compared to control treated seeds. The BA, PO, and BA + PO treatments were further tested under greenhouse and field conditions with pre-treated seedlings in FOL-contaminated soil. Under greenhouse conditions, each treatment decreased disease severity compared to untreated seedlings. Under field conditions, pre-treatment of tomato seedlings with BA and PO treatments reduced disease severity greater than BA + PO in combination and the mock-treated plants (66.6% for BA, 66.6% for PO and 55.3% for BA + PO, respectively). These findings support the use of BA or PO as bio-control agents against F. oxysporum in tomato. The interplay between peppermint oil, B. amyloliquefaciens, F. oxysporum, and the host plant requires further study to identify the causative mechanism for this increased disease resistance.


Author(s):  
M. Raveendra Reddy ◽  
M. K. Shivaprakash ◽  
S. Adithya

An investigation study was carried to test the ability of endophytic bacteria isolated from small millets as a biocontrol agent against the fungal pathogen Pythium aphanidermatum, the causal organism of sheath blight in foxtail millet (Setaria italica L.) grown in seedling trays under greenhouse conditions. In total twelve bacterial endophytes were isolated out of which six isolates produced β -1, 3 glucanases, 11 isolates produced chitinases and 12 isolates produced siderophores under in-vitro conditions. All these bacterial endophytic isolates inhibited mycelial growth of Pythium aphanidermatum in plate assay and liquid culture and the highest percent inhibition of mycelium was recorded in KMS5 (44.44%) followed by KMS1 (38.89%). In seedling trays, BMR7 and KMS5 (81.66%) had recorded the highest percent germination followed by KMS1 (79.62%) and KMS1 and KMS5 took 10.85 and 10.55 days respectively for 50% seed germination compared to control (13.50 days) which was treated with pathogen alone. Lowest pre-emergence disease incidence was noticed in KMS5 (14.03%) followed by KMS1 (16.18%) whereas T1 (Control) recorded maximum pre-emergence disease incidence (39.82%) was observed. Least post-emergence disease incidence (11.36) and biocontrol efficacy (68.74%) was recorded with KMS5. Apart from showing antagonistic activity, KMS5 had recorded a significantly higher seedling vigor index (2712.97), root length (18.12 cm), shoot length (15.10 cm), root dry weight (0.158 g) and shoot dry weight (0.76 g) compared to other bacterial endophytic isolates.


Sign in / Sign up

Export Citation Format

Share Document