scholarly journals Evaluation of the Levels of Heavy Metals, Total Petroleum Hydrocarbon and Total Hydrocarbon Content in Tympanotomus fuscatus and Sediment, Qua Iboe River, Akwa Ibom State, Nigeria

Author(s):  
Edidiong E. Ikpe ◽  
Ifiok O. Ekwere ◽  
Etiowo G. Ukpong ◽  
James O. Effiong ◽  
Okon E. Okon

This study assesses the levels of heavy metals and  hydrocarbons in Tympanotomus fuscatus and the sediments of Qua Iboe River, Akwa Ibom State; the interest in the study area was due to the several industrial and oil exploration activities in the area. The heavy metals (HM) of interest were Pb, Cd, Cu, Se, Zn, As, Cr, Fe, Ni and Hg, determined using Atomic Absorption Spectroscopy while Total Hydrocarbon Content (THC) and Total Petroleum Hydrocarbon (TPH) were determined by the GC-FID method. Results obtained indicated that the heavy metal concentration in Tympanotomus fuscatus ranged as follows:  Pb (1.037 – 2.002 mg/kg), Cd (0.00 – 0.088 mg/kg), Cu (0.0037 – 10.01 mg/kg), Se (2.364 – 5.063 mg/kg), Zn (0.025 – 1.393 mg/kg), As (0.0113 – 0.355 mg/kg), Cr (1.075 – 3.055 mg/kg), Fe (2.384 – 10.022), Ni (0.045 – 1.223 mg/kg), Hg (0.037 – 1.003 mg/kg) while heavy metal concentration in sediments were: Pb (1.399 – 2.345 mg/kg), Cd (0.0267– 0.222 mg/kg), Cu (0.017 – 10.0197 mg/kg), Se (1.388 – 3.369 mg/kg), Zn (5.688 – 8.038 mg/kg), As (0.003 – 0.0317 mg/kg), Cr (0.0157 – 2.057 mg/kg), Fe (27.351 – 86.686), Ni (0.017 – 5.0413 mg/kg), Hg (0.06 – 1.53 mg/kg); generally, heavy metals levels were higher in dry season than in wet season. The levels of TPH ranged from 160.86 – 1081.52 mg/kg in Tympanotomus fuscatus and 175.97 – 3143.91 mg/kg in sediments; meanwhile, the concentration of TPH ranged from 728.47 – 2442.04 mg/kg in Tympanotomus fuscatus and 492.41 – 7186.25 mg/kg in sediments. Multiple correlation coefficient matrixes were carried out to ascertain the relationship between the pollutants concentration in the biota and sediments. Furthermore, predictive modeling of pollutant concentration in flesh and shell of Tympanotomus fuscatus was estimated. The results indicate that the amounts of HM, TPH and THC in some of the study sites were above the maximum permissible limit set by WHO and FMEnv; thus, pose health risk to humans.

2019 ◽  
Vol 75 ◽  
pp. 1-12
Author(s):  
Aroloye O. Numbere

This study is based on bioaccumulation of total hydrocarbon (THC) and heavy metals in body parts of the West African red mangrove crab (G. pelii), which inhabit polluted mangrove forests. Thirty crabs were captured in October, 2018 and sorted into male and female. Their lengths and widths were measured, and body parts dismembered and oven-dried at 70 ͦ C for 48 hours. Physicochemical analysis for Cadmium (Cd), Zinc (Zn), Lead (Pb) and THC was measured by spectrophotometric method using HACH DR 890 colorimeter (wavelength 420 nm) and microwave accelerated reaction system (MARS Xpress, North Carolina) respectively. There was no significant difference (P > 0.05) in THC and heavy metals in the body parts of crabs.  However, Zinc was highest in claw (993.4±91.3 mg/l) and body tissues (32.5±1.9 mg/l), Pb was highest in carapace (34.6±2.8 mg/l) and gill (151.9±21.6 mg/l) while THC was highest in intestine (39.5±2.9 mg/l) and gut (52.4±13.4 mg/l). The order of concentration is Zn>Pb>THC>Cd. Male crabs had slightly higher THC and heavy metal concentration than female crabs probably because of their large size. There is negative correlation between carapace area and THC concentration (R = -0.246), meaning THC decreases with increasing carapace size. Internal parts of crab had higher THC and heavy metal concentration than external parts. These results show that there is high bioaccumulation of THC and heavy metals in crab, which is above WHO/FAO standard. This implies that the crabs are unfit for human consumption. The smaller the crab the better it is for consumption in terms of bioaccumulation of pollutants.


Author(s):  
G. I. Ameh ◽  
L. C. Ogbodo

The effect of seasonal changes on heavy metals concentration in three commonly edible fruits in Enugu State was analyzed. Banana, pineapple and watermelon samples were collected during three rainy season months (June, July and August) from three markets in the three districts of Enugu state (Enugu North, Enugu West and Enugu East). Heavy metals evaluated during the study include lead, cadmium, cobalt, nickel, zinc and copper. Metals in the samples were quantified using atomic absorption spectrophotometry (AAS) at specific wave lengths and values reported in mg/kg. The result of the study showed the maximum and minimum values of heavy metals observed in all the samples were; 0.28 – 0.03 mg/kg, 0.22 – 0.01 mg/kg, 0.13 – 0.01 mg/kg, 0.64 – 0.33 mg/kg, 0.69 – 0.01 mg/kg and 13.88 – 1.42 mg/kg for lead, cadmium, nickel, cobalt, copper and zinc respectively. The quantity of metals in all the samples, on average, reduces as the rainy season month progresses. The order of heavy metal concentrations in the fruit samples from the markets were in the following decreasing order; Nsukka market> Ogbete market> Ezeagu market. Banana fruit showed the highest concentration of heavy metals while watermelon showed the least heavy metal concentration. Values obtained were compared to WHO maximum permissible limit for each metal. Environmental pollution should be prevented in market areas to avoid food poisoning from consumption of contaminated food.


Author(s):  
Audronė Mikalajunė ◽  
Lina Jakučionytė

Vehicles release large amounts of heavy metals to the environment. There have been done a lot of investigations analysing the distribution of heavy metals in soils near intensive regional roads. However, there is lack of investigations into the impact of small-intensity gravel roads on roadside soil contamination with heavy metals. The object of this investigation is four gravel roads of local significance connecting small villages. The intensity of these roads is very low. The gravel roads are chosen according to application of dust-minimizing materials, for example, CaCl2 and oil emulsion. According to our results, none of the soil samples had an excess of heavy metal concentration limit. Besides, heavy metal concentrations were decreasing with a distance from the road increasing. We can make an assumption that road dust-minimizing materials do not have a significant impact on heavy metal distribution in roadside soils. The major factors of heavy metal pollution distribution in roadside soils are traffic intensity, roadside trenches, and topographic conditions. Santrauka Eksploatuojant autotransportą, į aplinką patenka daug sunkiųjų metalų. Atlikta nemažai tyrimų sunkiųjų metalų paplitimuidirvožemyje šalia intensyvių magistralinių kelių nustatyti, tačiau mažo intensyvumo keliai šiuo požiūriu tiriami mažai.Tirti pasirinkta 4 žvyrkeliai – vietinės reikšmvs keliai, jungiantys nedideles gyvenvietes. Eismo intensyvumas šiuose keliuose mažas. Žvyrkeliai pasirinkti pagal taikomas priemones dulkėtumui mažinti, t. y. du nagrinvjami žvyrkeliai apdorotiCaCl2, kiti du – naftos emulsija. Nė viename mėginyje sunkiųjų metalų koncentracijos neviršijo DLK, o tolstant nuo važiuojamosios kelio dalies sunkiųjų metalų koncentracijos buvo mažesnės. Galima daryti prielaidą, kad kelio apdorojimo medžiagos dulkėtumui mažinti žymios įtakos sunkiųjų metalų pasiskirstymui pakelių dirvožemyje nedaro, lemia transporto srauto intensyvumas, kelio grioviai pakelėse bei reljefo sąlygos. Резюме При эксплуатации автомобилей в окружающую среду попадает много тяжелых металлов. Проведено немалоисследований, посвященных анализу распространения тяжелых металлов в почве обочин интенсивно эксплуатируемых магистральных дорог, однако исследований, касающихся аналогичных проблем дорог малой интенсивности, в настоящее время имеется немного. В настоящей работе в качестве объекта исследований выбраны четыредороги местного значения с гравийным покрытием, соединяющие небольшие поселения. Интенсивность дорог небольшая. Гравийные дороги выбраны с учетом их обработки для уменьшения пыльности – две дороги обработаны с применением CaCl2, а две другие – с применением нефтяной эмульсии. Ни в одной пробе не былозафиксировано концентраций тяжелых металлов, превышающих допустимые нормами. С удалением от проезжей части концентрации тяжелых металлов уменьшались. На основании исследований можно сделать вывод о том,что материалы, применявшиеся для уменьшения пыльности дорог, большого влияния на распространениетяжелых металлов в почве обочин дорог не оказывают. На распространение тяжелых металлов в почве обочин оказывает влияние интенсивность транспортного потока, кюветы на обочинах и условия рельефа.


2016 ◽  
Vol 31 (4) ◽  
Author(s):  
Sock Yin Tan ◽  
Sarva Mangala Praveena ◽  
Emilia Zainal Abidin ◽  
Manraj Singh Cheema

AbstractIndoor dust acts as a media for heavy metal deposition. Past studies have shown that heavy metal concentration in indoor dust is affected by local human activities and atmospheric transport can have harmful effects on human health. Additionally, children are more sensitive to heavy metals due to their hand-to-mouth behaviour and rapid body development. However, limited information on health risks were found in past dust studies as these studies aimed to identify heavy metal concentrations and sources of indoor dust. The objective of this review is to discuss heavy metal concentration and sources influencing its concentration in indoor dust. Accordingly, high lead (Pb) concentration (639.10 μg/g) has been reported in heavy traffic areas. In addition, this review paper aims to estimate the health risk to children from heavy metals in indoor dust via multiple exposure pathways using the health-risk assessment (HRA). Urban areas and industrial sites have revealed high heavy metal concentration in comparison to rural areas. Hazard index (HI) values found in arsenic (As), chromium (Cr) and Pb were 21.30, 1.10 and 2.40, respectively, indicate that non-carcinogenic elements are found in children. Furthermore, most of the past studies have found that carcinogenic risks for As, cadmium (Cd), Cr and Pb were below the acceptable total lifetime cancer risk (TLCR) range (1×10


2017 ◽  
Vol 2 (3) ◽  
pp. 156
Author(s):  
S.A. Bhutada ◽  
S.B. Dahikar

At present various microorganisms are used for bioremediation of heavy metals from soil and water bodies. The aim of present work was to isolate the potential heavy metal degrading organisms and to apply for bioremediation of heavy metals from the domestic as well as industrial waste. The study involves the isolation of the bacterial species residing the natural habitat of such environments and screening of these isolates to degrade different heavy metals such as Cu, Cd, Hg, Ni, and Zn  up to the concentration 2000 ppm. There were six bacterial potential isolates  found namely Pseudomonas spp., (3), Achromobacter spp., Uncultured Microbacterium spp., and Exigoubacterium spp., which showing the growth up to the concentration of 2000 ppm. The potency of the six potential isolates was determined by using the conventional plate count technique.  The percentage removal of analyzed by the use of ICP-AES technique. The study shows isolation of the species which can remove heavy metal up to 60%. It was also found that the increase in the incubation time causes more reduction in the heavy metal concentration. The mutational analysis of the isolates for the strain improvement process shows that the Exigoubacterium species can grow at 3000 ppm heavy metal concentration and showed 60% reduction in heavy metal. This highly potential species can be used for the removal of different heavy metals which is also a viable, eco friendly and cost effective technology for cleanup of the environment. 


Baltica ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 51-62
Author(s):  
Alexander Krek ◽  
Aleksandr Danchenkov ◽  
Marina Ulyanova ◽  
Darya Ryabchuk

The scope of the study was to assess the impact of potential sources of Cu, Zn, Co, Ni, and Cr on bottom sediments of the Russian sector of the south-eastern Baltic Sea. A total of 68 samples were taken and analyzed for grain-size (laser diffraction and sieve method) and heavy metal concentration (atomic absorption spectroscopy method). To avoid the influence of the sorption capacity of the fine-grained sediments to accumulate the pollutants, the normalization of the heavy metal concentration to Fe was applied. The environmental indices (contamination factor and modified degree of contamination) were calculated. The research has shown the contribution of oil platform, pipelines, ports and wastewater treatment facilities on the geochemical composition of bottom sediments. The authors have identified the level of heavy metals contamination of the middle parts of the Curonian and Vistula spits as a result of alongshore transport of pollutants.


Author(s):  
Nachana’a Timothy

Heavy metal concentration in roadside soil and plants are increasingly becoming of health concern. This work determined the concentration of selected heavy metals (Cd, Pb, Zn, Cr, Fe, Mg, Mn, Co, Ni and Cu) in roadside soils and plants samples from selected sites (Plaifu, Shiwa, Fadama-rake and Damdrai) along major road in Hong. Soil samples were taken 10 m, 20 m and 30 m away from the edge of the road at the  depth of 0-10 cm, 10-20 cm and 20-30 cm. Plant samples were randomly collected within the vicinity where the soil samples were taken and were analysed using Atomic Absorption Spectrophotometer. The result revealed the trend in soil heavy metal concentration was Fe > Mn > Mg > Pb > Zn > Ni > Co > Cu > Cr > Cd and for plant the trend was Fe > Mn > Mg > Zn > Pb > Ni > Cu > Cd > Co > Cr. The concentrations decreased with increasing distance away from the edge of the road as well as with depth at which the soil sample were taken. The transfer factor showed that the concentration of Zn, Mn, Cu and Mg were greater than 1, which shows that plant were enriched by Zn, Mn, Cu and Mg from the soil. Mg and Cd equal to 1 at Plaifu and Damdrai. Most of the values of TF at the study area super pass 0.5, which implies that generally, the ability of bioaccumulation of these heavy metals in examined plants were relatively high.


2019 ◽  
Vol 21 (1) ◽  
pp. 69-82
Author(s):  
Iyabode Olusola Taiwo ◽  
Olaniyi Alaba Olopade ◽  
Nathanael Akinsafe Bamidele

Abstract This research was undertaken to find out the levels of five heavy metals (Cu, Fe, Mn, Pb, and Zn) in the muscles of eight fish species from Epe Lagoon. The levels of heavy metals were determined by atomic absorption spectrophotometry after digestion of the samples using Kjldahl heating digester. The heavy metal concentrations among the fish species were statistically dissimilar (P < 0.5). The heavy metals of Pb, Fe, and Mn were above the FAO/WHO agreeable limits for human consumption.


2021 ◽  
Vol 11 (11) ◽  
Author(s):  
Satyam Srivastava ◽  
Vinay Sharma

AbstractHeavy metals are very toxic and hazardous for human health. Onsite screening of heavy metal contaminated samples along with location-based automation data collection is a tedious job. Traditionally high-end equipment’s such as gas chromatography mass spectrometer (GC–MS) and atomic absorption spectrometers have been used to measure the concentration of different heavy metals in water samples but most of them are costly, bulky, and time consuming, and requires expert human intervention. This manuscript reports an ultra-portable, rapid, cost-effective, and easy-to-use solution for onsite heavy metal concentration measurement in drinking water samples. Presented solution combines off-the-shelf available chemical kits for heavy metal detection and developed spectrometer-based readout for concentration prediction, quality judgment, and automatic data collection. Two chemical kits for copper and iron detection have been imported form Merck and have been used for overall training and testing. The developed spectrometer has capability to work with smartphone-based android app and also can work in standalone mode. The developed spectrometer uses white light-emitting diode as a source and commercially imported spectral sensor (AS7262) for visible radiation reception. A low-power sub-GHZ-based wireless embedded platform has been developed and interfaced with source and detector. A power management module also has been designed to monitor the battery status and also to generate low battery indication. Overall modules has been packaged in custom designed enclosure to avoid external light interference. The developed system has been trained using standard buffer samples with known heavy metal concentrations and further tested for water samples collected from institute colony and nearby villages. The obtained results have been validated with commercially imported system from HANNA instruments, and it has been observed that developed system has shown excellent accuracy to predict heavy metal concentration (tested for Fe and Cu) in water samples.


2021 ◽  
Author(s):  
Adeyela Ibironke Okunlola ◽  
Dotun Nathaniel Arije ◽  
Katherine Olayinka Olajugbagbe

A completely randomized design with three replicates was conducted at the Screen house of the Department of Crop Soil and Pest Management, Federal University of Technology Akure, Ondo State, to examine the phytoremediation potential of Codiaeum variegatum and Basella alba on contaminated soils from four locations. Soils were collected from the Mechanic workshop, Dumpsite, Forest Topsoils, and Effluent site, and filled into the buckets. Initial soil analysis was conducted on all the soils to determine heavy metal concentration (Cu, Cd, Ni, Pb, and Zn). At 12 weeks after planting, soil and plant (root and shoot) samples were analyzed to determine the heavy metals accumulated. WHO permissible limit value for heavy metal concentration in soil and plant were used as a standard to evaluate plant phytoremediation potential. Results from the study confirm the phytoremediation potential of C. variegatum and its high tolerance for the accumulation of heavy metals. B. alba plant also shows its potential in removing heavy metals from the soil, but it was not as tolerant as C. variegatum as B. alba planted in soils from mechanic workshop and effluent site had stunted growth.


Sign in / Sign up

Export Citation Format

Share Document