scholarly journals Phenology, Agrometeorological Indices and Yield of Pusa Basmati-1509 as Influenced by Sowing Dates and Nitrogen Levels under Temperate Conditions

Author(s):  
Ashaq Hussain ◽  
Showkat A. Mughal ◽  
Intikhab Aalum Jehangir ◽  
M. Anwar Bhat ◽  
N. R. Sofi ◽  
...  

The purpose of the study was to optimize the sowing date and nitrogen level in early maturing rice (Pusa basmati 1509) under temperate climate for realizing higher yield. The experiment was conducted on silty clay loam soil, neutral in reaction, low in available nitrogen, medium in available phosphorus, potassium and organic carbon. Treatments included three sowing dates viz 20th April, 30th April, and 10thMay and five nitrogen levels viz 0, 30, 60, 90 and 120 kg N ha-1 laid out in split plot design with three replications. Among the sowing dates, 20th April took maximum no. days to reach different phenological stages and maturity. The GDD (1431) and HTU (15161 oC d-1 hr-1) requirement to reach maturity was maximum for 20th of April sowing. Significantly higher grain yield, higher HUE (2.90 kg ha-1 oC-1 d-1) and HTUE (0.273 kg ha-1 oC-1 hr-1) was realized form 1st date of sowing i.e., 20th of April. Higher doses of 120 kg N ha-1resulted in slightly more number of days to reach different phenological stages and maturity that was also reflected in higher accumulation of more GDD 1403° and HTU (14987 °C d-1 hr-1) at maturity.  Highest HUE (1.42 kg ha-1 oC-1 d-1) and HTUE (0.133 kg ha-1 °C-1 hr-1) was realized at 120 kg N ha-1. Further among the sowing dates, 20th April and 30th April had significantly higher growth parameters viz. plant height, leaf area index, tillers m-2, dry matter accumulation, leaf area index and SPAD reading as compared to 10th May. Most of the growth and yield parameters were found significantly higher at nitrogen level of 120 kg ha-1. However, most of them were at par with followed by nitrogen level of 90 kg ha-1.

2020 ◽  
Vol 38 (1) ◽  
pp. 61-72
Author(s):  
Yeison Mauricio Quevedo-Amaya ◽  
José Isidro Beltrán-Medina ◽  
José Álvaro Hoyos-Cartagena ◽  
John Edinson Calderón-Carvajal ◽  
Eduardo Barragán-Quijano

Multiple factors influence rice yield. Developing management practices that increase crop yield and an efficient use of resources are challenging to modern agriculture. Consequently, the aim of this study was to evaluate biological nitrogen fixation and bacterial phosphorous solubilization (biofertilization) practices with the selection of the sowing date. Three sowing dates (May, July and August) were evaluated when interacting with two mineral nutrition treatments using a randomized complete block design in a split-plot arrangement. Leaf carbon balance, leaf area index, interception and radiation use efficiency, harvest index, dry matter accumulation, nutritional status, and yield were quantified. Results showed that the maximum yield was obtained in the sowing date of August. Additionally, yield increased by 18.92% with the biofertilization treatment, reaching 35.18% of profitability compared to the local production practice. High yields were related to a higher carbon balance during flowering, which was 11.56% and 54.04% higher in August than in July and May, respectively, due to a lower night temperature. In addition, a high efficient use of radiation, which in August was 17.56% and 41.23% higher than in July and May, respectively, contributed to obtain higher yields and this behavior is related to the selection of the sowing date. Likewise, a rapid development of the leaf area index and an optimum foliar nitrogen concentration (>3%) were observed. This allowed for greater efficient use of radiation and is attributed to the activity of nitrogen-fixing and phosphate solubilizing bacteria that also act as plant growth promoters.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
H. Arnold Bruns ◽  
Hamed K. Abbas

Four glyphosate resistant corn (Zea maysL.) hybrids, a glufosinate-ammonium resistant hybrid, and a conventional atrazine resistant hybrid gown at Stoneville, MS in 2005, 2006, and 2007 with furrow irrigation were treated with their respective herbicides and their growth, yield, and mycotoxin incidence were compared with untreated cultivated plots. Leaf area index (LAI) and dry matter accumulation (DMA) were collected on a weekly basis beginning at growth stage V3 and terminating at anthesis. Crop growth rates (CRGs) and relative growth rates (RGRs) were calculated. Plots were later harvested, yield and yield component data collected, and kernel samples analyzed for aflatoxin and fumonisin. Leaf area index, DMA, CRG, and RGR were not different among the herbicide treated plots and from those that were cultivated. Curves for LAI and DMA were similar to those previously reported. Aflatoxin and fumonisin were relatively low in all plots. Herbicide application or the lack thereof had no negative impact on the incidence of kernel contamination by these two mycotoxins. Herbicides, especially glyphosate on resistant hybrids, have no negative effects on corn yields or kernel quality in corn produced in a humid subtropical environment.


2017 ◽  
Vol 5 (4) ◽  
pp. 423-429 ◽  
Author(s):  
Mohan Mahato ◽  
Bishnu Bilas Adhikari

A field experiment was conducted under humid subtropical agro-climatic condition of Nepal during rainy season of 2014. The experiment was laid out in to two factor Randomized Complete Block Design with  three replications consisting three drought tolerant rice varieties (Sukhadhan-4, Sukhadhan-5 and Radha-4) and four planting geometry (15 cm × 10 cm, 15 cm × 15 cm, 20 cm × 15 cm and 20 cm × 20 cm). The results revealed that the highest plant height and maximum leaf area index was recorded in planting geometry 15 cm × 10 cm in all growth stages. Whereas, planting geometry 20 cm × 15 cm produced the maximum number of tiller m-2 in all growth stage.  While planting geometry 20 cm × 15 cm and 20 cm × 20 cm produced statistically similar crop growth rate and dry matter accumulation in all stage of growth. Regarding the varieties, Sukhadhan- 4 showed highest plant height up to 75 DAT and plant height was statistically similar to Radha - 4 in 60 and 75 DAT. But maximum number of tiller m-2, leaf area index, crop growth rate and dry matter accumulation were recorded in Sukhadhan – 5 varieties. Int. J. Appl. Sci. Biotechnol. Vol 5(4): 423-429


2019 ◽  
Vol 11 (7) ◽  
pp. 1966 ◽  
Author(s):  
Ligita Baležentienė ◽  
Ovidijus Mikša ◽  
Tomas Baležentis ◽  
Dalia Streimikiene

Intelligent agricultural solutions require data on the environmental impacts of agriculture. In order for operationalize decision-making for sustainable agriculture, one needs to establish the corresponding datasets and protocols. Increasing anthropogenic CO2 emissions into the atmosphere force the choice of growing crops aimed at mitigating climate change. For this reason, investigations of seasonal carbon exchange were carried out in 2013–2016 at the Training Farm of the Vytautas Magnus University (former Aleksandras Stulginskis University), Lithuania. This paper compares the carbon exchange rate for different crops, viz., maize, ley, winter wheat, spring rapeseed and barley under conventional farming. This study focuses on the carbon exchange rate. We measure the emitted and absorbed CO2 fluxes by applying the closed chamber method. The biomass measurement and leaf area index (LAI) calculations at different plant growth stages are used to evaluate carbon exchange in different agroecosystems. The differences in photosynthetically assimilated CO2 rates were significantly impacted by the leaf area index (p = 0.04) during the plant vegetation period. The significantly (p = 0.02–0.05) strong correlation (r = 0.6–0.7) exists between soil respiration and LAI. Soil respiration composed only 21% of the agroecosystem carbon exchange. Plant respiration ranged between 0.034 and 3.613 µmol m−2 s−1 during the vegetation period composed of a negligible ratio (mean 16%) of carbon exchange. Generally, respiration emissions were obviously recovered by the gross primary production (GPP) of crops. Therefore, the ecosystems were acting as an atmospheric CO2 sink. Barley accumulated the lowest mean GPP 12.77 µmol m−2 s−1. The highest mean GPP was determined for ley (14.28 µmol m−2 s−1) and maize (15.68 µmol m−2 s−1) due to the biggest LAI and particular bio-characteristics. Due to the highest NEP, the ley (12.66 µmol m−2 s−1) and maize (12.76 µmol m−2 s−1) agroecosystems sank the highest C from the atmosphere and, thus, they might be considered the most sustainable items between crops. Consequently, the appropriate choice of crops and their area in crop rotations may reduce CO2 emissions and their impact on the environment and climate change.


Author(s):  
Rupinder Kaur Jassal ◽  
Harmeet Singh

An experiment was conducted at Punjab Agricultural University, Ludhiana during 2015 and 2016 to study the effect of priming, different seed rate on growth and seed yield of soybean planted under bed and flat method. The study was planned in factorial split plot design, keeping two planting techniques (flat sowing and bed sowing) and two seed priming treatments ( non primed seeds and 100 ppm GA3 primed seeds) in main plot and three seed levels ( 50, 62.5 and 75 kg ha-1) in sub plot. The objective of the study was to evaluate the effect of seed priming on growth and productivity under different planting techniques with the use of varying seed rates. The results revealed that growth attributes viz. emergence count, plant height, dry matter accumulation, leaf area index and photosynthetic active radiation interception (%) was significantly higher under bed planting technique as compared to flat sowing method. The pooled seed yield was increased by 15.6 % in bed planted soybean crop as compared to flat planted crop. Soybean seeds primed with 100 ppm GA3 recorded significant results in all the growth parameters. Primed seed recorded increase in yield 15.3 % than non primed seeds. Seed rate of 62.5 kg ha-1 recorded significantly higher emergence count, plant height, dry matter accumulation, leaf area index and photosynthetic active radiation interception (%) which was statistically similar in results with 75 kg ha-1 seed rate in both the two years. Pooled seed yield of 62.5 kg ha-1seed rate was 4.61 % higher than 75 kg ha-1 and 12.6 % than 50 kg ha-1 seed rate.


1981 ◽  
Vol 96 (1) ◽  
pp. 167-186 ◽  
Author(s):  
D. W. Lawlor ◽  
W. Day ◽  
A. E. Johnston ◽  
B. J. Legg ◽  
K. J. Parkinson

SUMMARYThe effects of water deficit on growth of spring barley were analysed under five irrigation treatments. One crop was irrigated at weekly intervals from emergence throughout the growing season, and one was not irrigated at all after emergence. Soil water deficits in the other treatments were allowed to develop early, intermediate or late in the crop's development.Weekly irrigation produced a crop with a large leaf area index (maximum value 4) and maintained green leaf and awns throughout the grain-filling period. Early drought decreased leaf area index (maximum value 2) by slowing expansion of main-stem leaves and decreasing the number and growth of tiller leaves. Leaf senescence was also increased with drought. Drought late in the development of ears and leaves and during the grain-filling period caused leaves and awns to senesce so that the total photosynthetic areas decreased faster than with irrigation. Photosynthetic rate per unit leaf area was little affected by drought so total dry-matter production was most affected by differences in leaf area.Early drought gave fewer tillers (550/m2) and fewer grains per ear (18) than did irrigation (760 tillers/m2 and 21 grains per ear). Late irrigation after drought increased the number of grains per ear slightly but not the number of ears/m2. Thus at the start of the grain-filling period crops which had suffered drought early had fewer grains than irrigated (9·5 and 18·8 × 103/m2 respectively) or crops which suffered drought later in development (14 × 103/m2).During the first 2 weeks of filling, grains grew at almost the same rate in all treatments. Current assimilate supply was probably insufficient to provide this growth in crops which had suffered drought, and stem reserves were mobilized, as shown by the decrease in stem mass during the period. Grains filled for 8 days longer with irrigation and were heavier (36–38 mg) than without irrigation (29–30 mg). Drought throughout the grainfilling period after irrigation earlier in the season resulted in the smallest grains (29 mg).Grain yield depended on the number of ears, the number of grains per ear and mass per grain. Early drought decreased tillering and tiller ear production and the number of grains that filled in each ear. Late drought affected grain size via the effects on photosynthetic surface area.Drought decreased the concentrations of phosphorus, potassium and magnesium in the dry matter of crops, and irrigation after drought increased them. Concentration of nitrogen was little affected by treatment. Possible mechanisms by which water deficits and nutrient supply affect crop growth and yield are discussed.


2019 ◽  
Vol 11 (3) ◽  
pp. 549
Author(s):  
Fábio Teixeira Delazari ◽  
Mariane Gonçalves Ferreira Copati ◽  
Gustavo Henrique da Silva ◽  
Ronaldo Silva Gomes ◽  
Derly José Henriques da Silva ◽  
...  

Nitrogen fertilization and supplying of water are crucial factors for quality and quantity produces of coriander. The objective of this study was to evaluate morphological and ecophysiological characteristics for coriander under five irrigation depths and two doses of nitrogen (N). Experimental layout was completely randomized design in a split plot scheme with five replications. The irrigation depths (plot) was 25, 50, 75, 100 and 125% of crop evapotranspiration (ETc). The doses of N (subplot) corresponded to 35 and 70 kg ha-1. The cultivation of coriander (“Vedete”) was in a protected environment. The ratio between the aerial part and roots linearly increased with the increment of the irrigation depths and was highest under 70 kg ha-1 of nitrogen. The leaf area index linearly increased with the increment of the irrigation depths at both doses of N. The leaf index of chlorophyll “a” was highest under irrigation depths of 87 and 75% of ETc for 35 and 70 kg ha-1 of N, respectively. The leaf index of chlorophyll “b” decrease linearly with the increase of irrigation depths in both doses of N. The nitrogen use efficiency was maximized with high soil moisture conditions. The water use efficiency decreases linearly with increasing of irrigation depth. The best irrigation depth and nitrogen dose obtained in this study was 125% of ETc and 70 kg/ha. The leaf index of chlorophyll “a” and “b” are important indicators of hydric stress. The leaf index of chlorophyll “b” are negatively correlated with leaf area index. N supply increase the water use efficiency.


2020 ◽  
Vol 3 (2) ◽  
pp. 50-55
Author(s):  
Ramhari Gaire ◽  
Chudamani Pant ◽  
Nischal Sapkota ◽  
Rajan Dhamaniya ◽  
Tej Narayan Bhusal

AbstractA field experiment was carried out to study the effect of spacing and nitrogen level on growth and yield of maize in Parbat from February to July, 2019. The experiment was laid out in two Factorial Randomized complete Block Design (RCBD) comprising of spacing: 60×15 cm and 60×25 cm and nitrogen: 30, 60, 90 and 120 kg/ha level as treatment with three replications. “Arun-2” variety of maize was planted on clay loam and acidic soil (pH 5.3) having medium in total nitrogen (0.15%), medium in soil available phosphorus (48.1 kg/ha), medium in soil available potassium (218.8 kg/ha) and medium in organic matter content (2.92%). Result shows that yield was significantly increased with increment in N-level up to 90 kg N/ha. The grain yield (5.18 mt/ha) was significantly higher at 90 kg N/ha than at 30 and 60 kg N/ha but at par with 120 kg N/ha. Significant effect on grain yield due to spacing was observed. The grain yield (4.11 mt/ha) obtained at spacing 60×15 cm. Moreover, the highest grain yield showed that highest grain yield (4.33 mt/ha) was obtained under 90 kg N/ha plus 60×15 cm spacing. The result revealed that different spacing and nitrogen level significantly affect the plant height and leaf area index. The plant height and leaf area index were significantly high at close spacing (60×15 cm) and at 120 kg N/ha. Likewise, yield attributing characteristics like cob length, cob diameter, number of kernel/rows, number of kernel row, thousand gran weight were the highest at 90 kg/ha but as par with 120 kg/ha at close spacing (60×15 cm). This study suggested that maize production can be maximized by cultivating “Arun-2” maize fertilizing with 90 kg N/ha and maintaining 60×15 cm spacing.


Sign in / Sign up

Export Citation Format

Share Document