scholarly journals Suggestion Petroleum Coke from Iraq Oil Mix. (T-21A+T-5) & PF2 as Alternative Fuel for Cement and Metallurgy

Author(s):  
Sherwan Mohammad Simo ◽  
Salah Aldin Naman ◽  
Kanaan Ramadan Ahmed ◽  
Akhmetov Arslan Faritovich ◽  
Lapshin Igor Gennadievich

The feasibility of utilizing petroleum coke as an alternative fuel for cement kilns and other industries was suggesting. The feedstock using in this study are mixture (T-21A+T-5) Tawke and Shekhan PF2 AT residues were obtained from two Iraqi-Kurdistan crude oils by removing distillates boiling point up to 350°C  using the atmospheric distillation unit. The coking processing of AT residues at high temperatures to produce gas, coking distillates and petroleum coke. Coking of AT residues were carried out at temperature 450-460°C and atmospheric pressure, at this temperature, the duration of heat treatment of the feed was 2h. 45 min for Tawke and 2h. 15 min for Shekhan. The choice of temperature and time of the experiments was made on the basis that a lower temperature increases the duration of the process, and at a higher temperature a significant reduction in the duration of the process according to GOST methods, it becomes difficult to obtain the target product with the required content of volatile substances. An increase in the duration of the coking process about 3 hours and more in all cases leads to a decrease in the content of volatile substances. The study was suggested petroleum coke can be using instead of fuel oil on industry effectiveness in cost reduction when switched over from fuel oil to petroleum coke. in the last of this work, after all the measurements and characteristic obtained, two types of treatment scheme were proposed for how to refine these types of crude oils, which give petroleum products with a high sulfur content. The research proposed the technological, ecological and economic aspects of petroleum coke as fuel, including high sulfur content, use as energy in the electrical field (electro energy), and as an alternative fuel for cement production and metallurgical manufacture.

2021 ◽  
Vol 147 (2) ◽  
pp. 04020150
Author(s):  
Xin Peng ◽  
Yuanqiao Wen ◽  
Changshi Xiao ◽  
Liang Huang ◽  
Chunhui Zhou

1999 ◽  
Vol 38 (11) ◽  
pp. 4507-4512 ◽  
Author(s):  
Mohammad R. Riazi ◽  
Nasrin Nasimi ◽  
Yousef A. Roomi

2018 ◽  
Vol 5 (1) ◽  
pp. 43-54
Author(s):  
Suresh Aluvihara ◽  
Jagath K Premachandra

Corrosion is a severe matter regarding the most of metal using industries such as the crude oil refining. The formation of the oxides, sulfides or hydroxides on the surface of metal due to the chemical reaction between metals and surrounding is the corrosion that  highly depended on the corrosive properties of crude oil as well as the chemical composition of ferrous metals since it was expected to investigate the effect of Murban and Das blend crude oils on the rate of corrosion of seven different ferrous metals which are used in the crude oil refining industry and investigate the change in hardness of metals. The sulfur content, acidity and salt content of each crude oil were determined. A series of similar pieces of seven different types of ferrous metals were immersed in each crude oil separately and their rates of corrosion were determined by using their relative weight loss after 15, 30 and 45 days. The corroded metal surfaces were observed under the microscope. The hardness of each metal piece was tested before the immersion in crude oil and after the corrosion with the aid of Vicker’s hardness tester. The metallic concentrations of each crude oil sample were tested using atomic absorption spectroscopy (AAS). The Das blend crude oil contained higher sulfur content and acidity than Murban crude oil. Carbon steel metal pieces showed the highest corrosion rates whereas the stainless steel metal pieces showed the least corrosion rates in both crude oils since that found significant Fe and Cu concentrations from some of crude oil samples. The mild steel and the Monel showed relatively intermediate corrosion rates compared to the other types of ferrous metal pieces in both crude oils. There was a slight decrease in the initial hardness of all the ferrous metal pieces due to corrosion.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 407 ◽  
Author(s):  
Mia Marchini ◽  
Alessandra Marti ◽  
Claudia Folli ◽  
Barbara Prandi ◽  
Tommaso Ganino ◽  
...  

The nutritional and physicochemical properties of sorghum proteins and starch make the use of this cereal for food production challenging. Sprouting is a cost-effective technology to improve the nutritional and functional profile of grains. Two drying treatments were used after sorghum sprouting to investigate whether the drying phase could improve the protein and starch functionalities. Results showed that the drying treatment at lower temperature/longer time (40 °C for 12 h) extended the enzymatic activity that started during sprouting compared to the one performed at higher temperature/shorter time (50 °C for 6 h). An increased protein hydrolysis and water- and oil-holding capacity were found in the flour obtained by the former treatment. Higher protein matrix hydrolysis caused high exposure of starch to enzymes, thus increasing its digestibility, while worsening the technological functionality. Overall, modulating drying conditions could represent a further way, in addition to sprouting, to improve sorghum flour’s nutritional profile.


2019 ◽  
Vol 493 ◽  
pp. 533-540 ◽  
Author(s):  
Johnny Muya Chabu ◽  
Ke Zeng ◽  
Wansong Chen ◽  
Abdulhadi Mustapha ◽  
Yajuan Li ◽  
...  

2009 ◽  
Vol 23 (06n07) ◽  
pp. 855-862 ◽  
Author(s):  
FEIYUE MA ◽  
ZHIYI LIU

The microstructural evolution in an Al - Cu - Mg - Ag alloy with trace Zr addition during homogenization treatment was characterized by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). It was shown that the low-melting-point phase segregating toward grain boundaries is Al 2 Cu , with a melting point of 523.52°C. A two-step homogenization process was employed to optimize the microstructure of the as-cast alloy, during which the alloy was first homogenized at a lower temperature, then at a higher temperature. After homogenized at 420°C for 6 h, Al 3 Zr particles were finely formed in the matrix. After that, when the alloy was homogenized at an elevated temperature for a longer time, i.e., 515°C for 24 h, most of the precipates at the grain boundaries were removed. Furthermore, the dispersive Al 3 Zr precipitates were retained, without coarsening greatly in the final homogenization step. A kinetics model is employed to predict the optimal homogenization time at a given temperature theoretically, and it confirms the result in present study, which is 420°C/6h+515°C/24h.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Baochun Zhao ◽  
Tan Zhao ◽  
Guiyan Li ◽  
Qiang Lu

Double compression tests were performed on a Gleeble-3800 thermomechanical simulator to study the softening behaviors of deformed austenite in a V-N microalloyed steel. The static recrystallization volume fractions were calculated by stress offset method, and the kinetic model of static recrystallization was constructed. The effects of temperature, strain, and time interval on the softening behaviors were analyzed, and the interactions between precipitation and recrystallization were discussed. The results show that the softening behaviors of the deformed austenite at lower temperature or higher temperature are markedly different. At the temperature of 850°C or 800°C, pinning effects of the precipitates play the main role, and the recrystallization process is inhibited, which leads to the formation of plateaus in the softening curves. An increase in strain promotes the precipitation and recrystallization processes while reduces the inhibition effect of precipitation on recrystallization as well.


2011 ◽  
Vol 686 ◽  
pp. 120-124
Author(s):  
Jin Ping Fan ◽  
She Bin Wang ◽  
Bing She Xu

The effects of Sr addition on the mechanical properties and microstructure of Mg-6Al mag- nesium alloy both at 25 °C and at 175 °C were investigated by means of OM, SEM and EDS and XRD. Upon the Sr addition of 2%, the tensile strength was increased by 7.2% to 184.4MPa at 25 °C, while it was increased by 30% to 155.4MPa at 175 °C. The strengthening mechanism of Mg-6Al-xSr at lower temperature (25 °C) was different from that at higher temperature (175°C). The results show that the addition of strontium effectively improved the microstructure and mechanical properties of magnesium alloy.


2001 ◽  
Author(s):  
Mark A. Iadicola ◽  
John A. Shaw

Abstract Experiments are presented of the response of pseudoelastic NiTi wires subjected to displacement controlled cycles. A custom built thermo-mechanical testing apparatus is used to control the background temperature field of the wire specimen while allowing the evolution of transformation fronts to be tracked by full field infrared imaging. Two experiments under similar end-displacement histories, but at temperatures ≈8°C apart, are shown to give remarkably different cyclic responses. The mechanical response for the lower temperature experiment continued to soften but retained its shape through 43 partial transformation cycles, and the pattern of transformation fronts seemed to reach a steady state. The response for the higher temperature experiment showed a change in shape of the mechanical response and distinct changes in transformation front patterns over 31 partial transformation cycles.


Sign in / Sign up

Export Citation Format

Share Document