scholarly journals Investigation of Hepatoprotective and Antioxidant Activity of Celosia argentea against Tissue Injury Caused by Rifampicin Administration

Author(s):  
Abiodun Olusoji Owoade ◽  
Adewale Adetutu ◽  
Olubukola Sinbad Olorunnisola ◽  
Olufemi Ogundeji Ogundipe

This study evaluated the antioxidant and possible protective effects of Celosia argentea against tissue injury caused by rifampicin administration. The antioxidant property of the aqueous extract of C. argentea was assessed in-vitro using 2,2-Diphenyl-1- picrylhydrazyl (DPPH), and 2,2-azino-bis (3-ethylbenzthiazoline-6-sufonic acid) (ABTS) assays. The results obtained revealed the free radical scavenging ability of the extract against the radicals in a concentration-dependent manner. Administration of rifampicin to rats for 28 days induced a significant increase in the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and increase cholesterol levels in the plasma, liver and kidney while HDL cholesterol was decreased. It also elevated the levels of malondialdehyde (MDA) and decreased superoxide dismutase (SOD) activities in the liver and kidney. However, co-administration of C. argentea extract to rifampicin treated rats significantly reversed all these rifampicin induced changes. The levels of AST, ALT, ALP and cholesterol in the plasma, liver and kidney were decreased while HDL cholesterol level was increased. In addition, SOD activity was elevated while MDA was depressed when compared to the rifampicin treated rats. The extract of C. argentea was found to be rich in phenolic content and was proved to have no toxic effects on rats when administered alone to normal rats at a dose level of 400mg/kg/day. This study demonstrated that C. argentea leaf extract ameliorates rifampicin-induced hepatotoxicity and could be exploited in the management of hepatotoxic effect associated with rifampicin treatment.

2018 ◽  
Vol 11 (3) ◽  
pp. 1239-1245 ◽  
Author(s):  
Bahaa Al-Trad ◽  
Mahmoud A Al –Qudah ◽  
Mazhar Al Zoubi ◽  
Alaa Al-Masri ◽  
Riyadh Muhaidat ◽  
...  

Previous studies indicated that the extracts from different Ephedra species have antibacterial, antifungal and antioxidant activities. However, none of the published report described the phytochemical components and the antioxidant capacities of Ephedra alte belonging to the family Ephedraceae. To evaluate the in-vitro and in-vivo antioxidant activities of the butanolic extract from stems of Ephedra alte from northern Jordan. Graded concentrations of butanolic extracts from stems of E. alte plant were subjected to four different in-vitro antioxidant assays (DPPH, ABTS, ferrous ion chelating and hydroxyl radical scavenging activities). The in-vivo effects of two different doses of the extract (200 mg/kg and 500 mg/kg, orally for 12 days) on the activities of serum and liver superoxide dismutase (SOD) and catalase (CAT) were measured in mice. Strong in-vitro antioxidant activities in a concentration-dependent manner were recorded. As well, significant increases in both liver and serum CAT enzyme activity and in serum SOD activity were observed in mice treated for 12 days with the extract. These results suggested that the butanolic extract from stems of exhibited significant in-vitro and in-vivo antioxidant activities, supporting the use of E. alte as an important source of natural antioxidants.


1994 ◽  
Vol 72 (4) ◽  
pp. 1973-1992 ◽  
Author(s):  
M. Tymianski ◽  
M. P. Charlton ◽  
P. L. Carlen ◽  
C. H. Tator

1. Cell-permeant Ca2+ chelators such as 1,2-bis-(2-amino-phenoxy)ethane- N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) protect neurons against excitotoxic and ischemic neuronal injury in vitro and in vivo. Here we provide the first steps toward characterizing the mechanisms by which these agents produce their neuroprotective effects. 2. Cultured mouse spinal neurons were simultaneously loaded with the Ca2+ indicator fura-2 and with one of three permeant chelators derived from the fast Ca2+ buffer BAPTA, or with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester (EGTA-AM). Adding these chelators did not interfere with the fluorescence spectrum of fura-2 and had no effect on baseline [Ca2+]i. 3. The neurons were challenged with 250 microM L-glutamate for 50 min, producing a marked transient [Ca2+]i increase followed by a decay of [Ca2+]i to a lower “plateau.” About 80% of control neurons succumbed to this excitotoxic insult. Neurons that survived adjusted their plateau [Ca2+]i to lower levels than those that succumbed. 4. Neurons that were pretreated with permeant Ca2+ chelators became more resistant to these neurotoxic challenges. 5. We examined whether this reduction in glutamate neurotoxicity could be related to the given buffer's known Ca2+ affinity (Kd), its Ca2+ binding kinetics, and its ability to attenuate glutamate-induced [Ca2+]i increases. 6. Pretreatment of neurons with BAPTA analogues having Kds ranging from 100 to 3,600 microM 1) attenuated the amplitude and 2) lengthened the time constant describing the rise and decay of the glutamate-evoked [Ca2+]i transient. The magnitude of these effects paralleled the affinity of the chelator for Ca2+. 7. BAPTA-AM and its analogues dramatically attenuated the early neurotoxicity of glutamate, reducing cell deaths by up to 80%. However, in contrast with the graded effects of chelators having different Ca2+ affinities on Ca2+ transients, all BAPTA analogues were equally protective. These protective effects did not relate to the chelators' Ca2+ affinity within a Kd range of 100 nM (for BAPTA) to 3,600 nM (for 5,5'-dibromo BAPTA). 8. BAPTA-AM protected neurons in a concentration-dependent manner with 50% protection obtained with 10 microM, a concentration having no effect on the [Ca2+]i transient amplitude. 9. EGTA, a slow Ca2+ buffer with a similar Ca2+ affinity to BAPTA produced the same effects as BAPTA on [Ca2+]i transient kinetics. However, it was far less protective than BAPTA. 10. The time course of early glutamate neurotoxicity was altered by the BAPTA analogues, but not EGTA. BAPTA analogues caused a small increase in cell deaths in the first minutes of each experiment, followed by relative sparing from further neurodegeneration. 11. The ability of low Ca2+ affinity chelators such as 5,5'-dibromo BAPTA to protect neurons without markedly attenuating measured [Ca2+]i increases conflicts with the hypothesis that global elevations in [Ca2+]i are responsible for triggering neurotoxicity.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 10 (4) ◽  
pp. 408-414
Author(s):  
Oluwaseun Ruth Olasehinde ◽  
Olakunle Bamikole Afolabi ◽  
Benjamin Olusola Omiyale ◽  
Oyindamola Adeniyi Olaoye

Introduction: Diabetes mellitus (DM) has been recognized as the seventh leading cause of global mortality; however, researchers seek alternative means to manage the menace. The current study sought to investigate antioxidant potentials, α-amylase, and α-glucosidase inhibitory activities of ethanolic extract of Moringa oleifera flower in vitro. Methods: Antioxidant properties of the extract were appraised by assessing its inhibition against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH•), and hydrogen peroxide (H2O2) free radicals, as well as ferric reducing antioxidant power (FRAP), the antidiabetic activity was evaluated by α-amylase and α-glucosidase inhibition.Results: In this study, ethanolic extract of M. oleifera flower demonstrated a significant (P < 0.05) inhibition against DPPH free radical (43.57–83.56%) in a concentration-dependent manner, while FRAP (101.76 ± 1.63 mg/100 g), OH• scavenging ability (71.62 ± 0.95 mg/100 g), and H2O2 free radical scavenging capacity (15.33 ± 1.20 mg/100 g) were also observed. In the same manner, ethanolic extract of M. oleifera flower revealed a significant (P < 0.05) inhibition against α-amylase (IC50= 37.63 mg/mL) and α-glucosidase activities (IC50= 38.30 mg/mL) in the presence of their respective substrates in a concentration-dependent manner in comparison with acarbose. Conclusion: Ethanoic extract of M. oleifera flower could be useful as an alternative phytotherapy in the management of DM, having shown a strong antioxidative capacity and substantial inhibition against the activities of key enzymes involved in carbohydrate hydrolysis in vitro.


2010 ◽  
Vol 38 (06) ◽  
pp. 1093-1106 ◽  
Author(s):  
Xing-Tai Li ◽  
Hong-Cheng Li ◽  
Chun-Bin Li ◽  
De-Qiang Dou ◽  
Ming-Bo Gao

Cordyceps militaris (L.) Link is an entomopathogenic fungus parasitic to Lepidoptera larvae, and is widely used as a folk tonic or invigorant for longevity in China. Although C. militaris has been used in traditional Chinese medicine for millennia, there is still a lack convincing evidence for its anti-aging activities. This study was performed to investigate the effects of polysaccharides from cultivated fruiting bodies of C. militaris (CMP) on mitochondrial injury, antioxidation and anti-aging activity. Fruiting bodies of C. militaris were cultivated artificially under optimized conditions. The spectrophotometric method was used to measure thiobarbituric acid reactive substances (TBARS), mitochondrial swelling, and activities of scavenging superoxide anions in vitro. D-galactose (100 mg/kg/day) was injected subcutaneously into back of the neck of mice for 7 weeks to induce an aging model. The effects of CMP on the activities of catalase (CAT), surperoxide dismutase (SOD), glutathione peroxidase (GPx) and anti-hydroxyl radicals were assayed in vivo using commercial monitoring kits. The results showed that CMP could inhibit mitochondrial injury and swelling induced by Fe2+ -L-Cysteine in a concentration- dependent manner and it also had a significant superoxide anion scavenging effect. Moreover, the activities of CAT, SOD, GPx and anti-hydroxyl radicals in mice liver were increased significantly by CMP. These results indicate that CMP protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial swelling, and increasing the activities of antioxidases. Therefore, CMP may have pharmaceutical values for mitochondrial protection and anti-aging. CMP was the major bioactive component in C. militaris.


2008 ◽  
Vol 5 (s2) ◽  
pp. 1123-1132 ◽  
Author(s):  
H. Vijay Kumar ◽  
C. R. Gnanendra ◽  
Nagaraja Naik ◽  
D. Channe Gowda

Dibenz[b,f]azepine and its five derivatives bearing different functional groups were synthesized by known methods. The compounds thus synthesized were evaluated for antioxidant potential through different in vitro models such as (DPPH) free radical scavenging activity,ß-carotene-linoleic acid model system, reducing power assay and phosphomolybdenum method. Under our experimental condition among the synthesized compounds dibenz[b,f]azepine (a) and 10-methoxy-5H-dibenz[b,f]azepine (d) exhibited potent antioxidant activity in concentration dependent manner in all the above four methods. Butylated hydroxyl anisole (BHA) and ascorbic acid (AA) were used as the reference antioxidant compounds. The most active compounds like dibenz[b,f]azepine and its methoxy group substituent have shown more promising antioxidant and radical scavengers compared to the standards like BHA and ascorbic acid. It is conceivable from the studies that the tricyclic amines,i.e. dibenz[b, f]azepine and some of its derivatives are effective in their antioxidant activity properties.


2011 ◽  
Vol 8 (3) ◽  
pp. 1451-1455
Author(s):  
Ramalingam Mahesh ◽  
Hyo Won Jung ◽  
Jun Hong Park ◽  
Yong-Ki Park

Ostericum koreanummaximowicz (Umbelliferae), a medicinal herb in Korean Oriental Medicine, has been applied to treat cold, headache, neuralgia and arthralgia. The ethyl acetate fraction ofO. koreanumroot was subjected toin vitroantioxidant activity with different methods for free radical scavenging activities. In addition, the cell viability and nitric oxide release assays were performed here for the first time in neuroblastoma (Neuro-2a) cell cultures. Among all the tested methods, the ethyl acetate fraction was expressed very active, exhibiting a good Trolox equivalent values and IC50, comparable to that of the commercial antioxidants, Trolox and ascorbic acid, respectively. The results showed that there was a reduction of cell viability by the fraction in a concentration dependent manner. These results suggest thatO. koreanumshows good antioxidant activitiesin vitroby inhibiting free radicals. These findings provide a rationale for thein vivotesting. Also, the major constituents behind the antioxidant mechanisms of this fraction warrant further study.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yanfang Gao ◽  
Huanwen Tang ◽  
Liang Xiong ◽  
Lijun Zou ◽  
Wenjuan Dai ◽  
...  

Hydroquinone (HQ) is widely used in food stuffs and is an occupational and environmental pollutant. Although the hepatotoxicity of HQ has been demonstrated both in vitro and in vivo, the prevention of HQ-induced hepatotoxicity has yet to be elucidated. In this study, we focused on the intervention effect of aqueous extracts of Flos lonicerae Japonicae (FLJ) on HQ-induced cytotoxicity. We demonstrated that HQ reduced cell viability in a concentration-dependent manner by administering 160 μmol/L HQ for 12 h as the positive control of cytotoxicity. The aqueous FLJ extracts significantly increased cell viability and decreased LDH release, ALT, and AST in a concentration-dependent manner compared with the corresponding HQ-treated groups in hepatic L02 cells. This result indicated that aqueous FLJ extracts could protect the cytotoxicity induced by HQ. HQ increased intracellular MDA and LPO and decreased the activities of GSH, GSH-Px, and SOD in hepatic L02 cells. In addition, aqueous FLJ extracts significantly suppressed HQ-stimulated oxidative damage. Moreover, HQ promoted DNA double-strand breaks (DSBs) and the level of 8-hydroxy-2′-deoxyguanosine and apoptosis. However, aqueous FLJ extracts reversed HQ-induced DNA damage and apoptosis in a concentration-dependent manner. Overall, our results demonstrated that the toxicity of HQ was mediated by intracellular oxidative stress, which activated DNA damage and apoptosis. The findings also proved that aqueous FLJ extracts exerted protective effects against HQ-induced cytotoxicity in hepatic L02 cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Rabia Kanwal ◽  
Muhammad Arshad ◽  
Yamin Bibi ◽  
Saira Asif ◽  
Sunbal Khalil Chaudhari

Zanthoxylum armatumDC. (syn.Z. alatumRoxb.) is an important medicinal plant commonly called Timur or Indian prickly ash. The ethnopharmacological study ofZ. armatumrevealed the use of different plant parts for curing various ailments including cholera, chest infection, fever, indigestion, stomach disorders, gas problems, piles, toothache, gum problems, dyspepsia, as carminative, antipyretic, aromatic, tonic, and stomachic. Keeping in view the medicinal potential of the plant, the antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power, and phosphomolybdate assay using different concentrations (7.81 μg/mL–250 μg/mL). Ascorbic acid was taken as standard. The results indicated that the free radical scavenging activity ranged from 40.12% to 78.39%, and the reductive potential ranged from 0.265 nm to 1.411 nm while the total antioxidant activity ranged from 0.124 nm to 0.183 nm. The antioxidant potential evaluated by three assays increased in a concentration dependent manner and ascorbic acid showed better antioxidant activity than leaf extract. Results obtained through different tests confirmed redox protective activities ofZanthoxylum armatum. Further in vitro and in vivo research should be performed, so this plant can be further utilized in drug development.


2016 ◽  
Vol 4 (1) ◽  
pp. 40
Author(s):  
Herbert Mbagwu ◽  
Etok Nsikan ◽  
Ekpo Emem

<p><strong>Aim:</strong> <em>Moringa oleifera </em>commonly known as “miracle plant” possesses enormous nutritional and medicinal properties. It is used in traditional medicine in treating many ailments, including liver disorders. Though some works on hepatoprotective effects have been done (Mishra et al., 2011), the present study aims at evaluating the methanolic leaf extract (MLE) of <em>Moringa oleifera </em>harvested in Ewet Housing Estate in Uyo; AkwaIbom State in South-South Nigeria.</p><p><strong>Materials and Methods:</strong> The Carbon tetrachloride (CCl₄) model was employed throughout this investigation (Dongare et al., 2013). Briefly, thirty animals were randomly divided into six groups of five animals in each group. Group I served as normal control and was administered 10ml/kg normal saline. Group II was the toxic control and received 3 ml/kg of CCl₄. Group III served as the reference control and received 100mg/kg silymarin while groups IV, V and VI received 9, 18 and 27 mg/kg of MLE respectively. Phytochemical screening, acute toxicity tests as well as free radical scavenging effects using DPPH (in vitro) were also carried out.</p><p><strong>Results:</strong> Preliminary phytochemical tests revealed the presence of tannins, flavonoids, alkaloids, anthraquinones, saponins, terpenes, phlobatanins and cardiac glycosides. The acute toxicity investigations showed that MLE LD₅₀ was 90 mg/kg. In the hepatoprotective studies, liver function tests (LFT) revealed a significant (p&lt;0.05) protective effect when compared with silymarin. The histopathological studies also provided supportive evidence for the protective effects of MLE. The DPPH studies showed that MLE has antioxidant property.</p><p><strong>Conclusion: </strong>It can be concluded based on findings from this study that the MLE of <em>Moringa oleifera </em>possesses antioxidant and hepatoprotective activities in a dose-dependent manner and safe for oral administration.</p>


2016 ◽  
Vol 88 (3 suppl) ◽  
pp. 1953-1965 ◽  
Author(s):  
JADE DE OLIVEIRA ◽  
MARCOS R. STRALIOTTO ◽  
GIANNI MANCINI ◽  
CLAUDIA P. FIGUEIREDO ◽  
ANTÔNIO L. BRAGA ◽  
...  

ABSTRACT Oxidation of low-density lipoprotein (LDL) has been strongly suggested to play a significant role in the pathogenesis of atherosclerosis. Thus, reducing LDL oxidation is a potential approach to decrease the risk of the atherosclerosis. Organoselenium compounds have demonstrated promising atheroprotective properties in experimental models. Herein, we tested the in vitro atheroprotective capability of a modified organoselenium compound, Compound HBD, in protecting isolated LDL from oxidation as well as foam cells formation. Moreover, the glutathione peroxidase (GPx)-like activity of Compound HBD was analyzed in order to explore the mechanisms related to the above-mentioned protective effects. The Compound HBD in a concentration-dependent manner reduced the Cu2+-induced formation of conjugated dienes. The protein portion from LDL were also protected from Cu2+-induced oxidation. Furthermore, the Compound HBD efficiently decreased the foam cell formation in J774 macrophage cells exposed to oxidized LDL. We found that the atheroprotective effects of this compound can be, at least in part, related to its GPx-like activity. Our findings demonstrated an impressive effect of Compound HBD against LDL-induced toxicity, a further in vivo study to investigate in more detail the antioxidant and antiatherogenic effects of this compound could be considered.


Sign in / Sign up

Export Citation Format

Share Document