scholarly journals Parameter Estimation of a dc Motor-Gear-ac Generator Mathematical Model

Author(s):  
Paul Kiplimo Tarus ◽  
Wesley Cheruiyot Koech

Mathematical  models and there parameters are essential for designers to predict the close loop behaviors of the plant so that systems are stable. A block model is develop in the MATLAB/simulink for the DC Motor-Gear-AC-Generator mathematical model in this paper, the block built is used to estimate the parameters in the estimation node using the gradient descent, simplex search and nonlinear least square algorithm. Gradient descent curve match that of the experimental data and its values are used in the DC Motor-Gear-AC Generator mathematical model. Objective: To built block simulink Estimate the parameters of the DC Motor-Gear-Generator mathematical model.

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1216 ◽  
Author(s):  
Eduardo Hernández-Márquez ◽  
Carlos Alejandro Avila-Rea ◽  
José Rafael García-Sánchez ◽  
Ramón Silva-Ortigoza ◽  
Magdalena Marciano-Melchor ◽  
...  

A mathematical model of a new “full-bridge Buck inverter–DC motor” system is developed and experimentally validated. First, using circuit theory and the mathematical model of a DC motor, the dynamic behavior of the system under study is deduced. Later, the steady-state, stability, controllability, and flatness properties of the deduced model are described. The flatness property, associated with the mathematical model, is then exploited so that all system variables and the input can be differentially parameterized in terms of the flat output, which is determined by the angular velocity. Then, when a desired trajectory is proposed for the flat output, the input signal is calculated offline and is introduced into the system. In consequence, the validation of the mathematical model for constant and time-varying duty cycles is possible. Such a validation of this mathematical model is tackled from two directions: (1) by circuit simulation through the SimPowerSystems toolbox of Matlab-Simulink and (2) via a prototype of the system built by using Matlab-Simulink and a DS1104 board. The good similarities between the circuit simulation and the experimental results allow satisfactorily validating the mathematical model.


2018 ◽  
Vol 17 (2) ◽  
pp. 28
Author(s):  
G. S. Lima ◽  
A. O. Souza ◽  
G. I. Medina T.

For prospecting or design of Concentrating Solar Power (CSP) systems it is necessary to know the distribution of the Direct Normal Irradiance (DNI) of the region. However, due to the recurring operational problems of measuring instruments, the use of mathematical models estimating the local DNI can be a very useful tool. The objective of this work is to construct a mathematical model that is used in the calculation of the DNI using experimental data provided by the Laboratory of Tropical Environmental Variables (LAVAT/INPE). This model was compared with other mathematical models already present in the literature. The consideration of clean-sky was used, that is, the effects of cloudiness, among others, were neglected.


2020 ◽  
Vol 5 (2) ◽  
pp. 225-228
Author(s):  
Inimfon Samuel Ossom ◽  
Akindele Folarin Alonge ◽  
Kingsley Charles Umani ◽  
Edidiong J. Bassey

A mathematical model for predicting the winnowing efficiency of bambara groundnut sheller was developed. The regression equation for model simulation was developed using Least Square Method. The model was verified and validated by fitting it into established experimental data from winnowing efficiency of already existed Bambara groundnut sheller. The result revealed that the fitted model correlated well with the experimental data with R-square value of 0.99. The winnowing efficiency obtained from the predicted model was approximately the same values with the experimental values. Therefore, the model equation was considered to be reasonably good for predicting the winnowing efficiency of bambara groundnut sheller for known values of moisture content and blower speed.


Author(s):  
Mohammad Soleimani Amiri ◽  
Mohd Faisal Ibrahim ◽  
Rizauddin Ramli

Estimating the parameters of a geared DC motor is crucial in terms of its non-linear features. In this paper, parameters of a geared DC motor are estimated genetically. Mathematical model of the DC motor is determined by Kirchhoff’s law and dynamic model of its shafts and gearbox. Parameters of the geared DC motor are initially estimated by MATLAB/SIMULINK. The estimated parameters are defined as initial values for Genetic Algorithm (GA) to minimize the error of the simulated and actual angular trajectory captured by an encoder. The optimal estimated model of the geared DC motor is validated by different voltages as the input of the actual DC motor and its mathematical model. The results and numerical analysis illustrate it can be ascertained that GA is appropriate to estimate the parameters of platforms with non linear characteristics.


2016 ◽  
Vol 8 (5) ◽  
pp. 540-547
Author(s):  
Tomas Eglynas ◽  
Audrius Senulis ◽  
Marijonas Bogdevičius ◽  
Arūnas Andziulis ◽  
Mindaugas Jusis

The main control object of Quay crane, which is operating in seaport intermodal terminal cargo loading and unloading process, is the crane trolley. One of the main frequent problem, which occurs, is the swinging of the container. This swinging is caused not only by external forces but also by the movement of the trolley. The research results of recent years produced various types of control algorithms by the other researchers. The control algorithms are solving separate control problems of Quay crane in laboratory environment. However, there is still complex control algorithm design and the controller’s parameter estimation problems to be solved. This paper presents mathematical model of the Quay crane trolley mechanism with the suspended cargo. The mathematical model is implemented in Matlab Simulink environment and using Dormand-Prince solving method. The presented model of laboratory quay crane mathematical model is dedicated to parameter estimation of PID controller of closed loop system with the usage of S –form speed input profile. The article includes the dynamic model of the presented system, the description of closed loop system and modeling results. These results will be used as an initial information for the PID parameters estimation in real quay crane control system. The simu-lation of the model was performed using estimated values of controller. The sway influence of the cargo, the usage of the trolley speed input S-shaper and the PID controller was used to control the trolley speed. Jūriniame įvairiarūšiame terminale atliekant konteinerių krovos procesus, vienas iš krantinės kranų valdymo objektų yra vežimėlis. Viena iš problemų, su kuria susiduriama dažniausiai, yra konteinerio svyravimai, kuriuos, be išorinių veiksnių, taip pat sukelia ir vežimėlio judėji-mas. Remdamiesi paskutinių kelerių metų tyrimais, mokslininkai sukūrė įvairių valdymo algoritmų, kurie laboratorinėmis sąlygomis spren-džia atskiras krantinės kranų valdymo problemas. Tačiau kompleksinių ir efektyvių valdymo algoritmų ir jų valdymo sistemos parametrų nustatymo metodai vis dar kuriami ir tobulinami. Šiame darbe sudarytas krantinės krano vežimėlio su kabančiu kroviniu mechanizmo sis-temos matematinis modelis. Šis modelis realizuotas Matlab Simulink aplinkoje ir sprendžiamas taikant Dormand-Prince metodą. Sukurtas laboratorinio krantinės krano valdymo sistemos kompiuterinis modelis skirtas uždarosios valdymo sistemos PID valdiklio parametrams nustatyti, kai užduoties signalui taikomas S formos greičio kitimo profilis. Darbe pateiktas sistemos dinaminis modelis, aprašyta uždaroji valdymo sistema, pateikti kompiuterinio modeliavimo rezultatai, kuriuos planuojama panaudoti kaip pradinę informaciją realaus krano PID valdiklio parametrams derinti. Atlikta simuliacija naudojant nustatytas vertes ir įvertinti krovinio svyravimai taikant S formos greičio kitimo profilį kartu su PID valdikliu vežimėlio greičiui valdyti.


2019 ◽  
Vol 92 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Eralp Sener ◽  
Irem Turk ◽  
Isil Yazar ◽  
Tahir Hikmet Karakoç

Purpose The aviation industry has started environment friendly and also conventional energy independent alternative energy dependent designs to reduce negative impacts on the nature and to maintain its future activities in a clear, renewable and sustainable way. One possible solution proposed is solar energy. Solar-powered aerial vehicles are seen as key solutions to reduce global warming effects. This study aims to simulate a mathematical model of a solar powered DC motor of an UAV on MATLAB/Simulink environment. Design/methodology/approach Maximum power point tracking (MPPT) is a critical term in photovoltaic (PV) array systems to provide the maximum power output to the related systems under certain conditions. In this paper, one of the popular MPPT techniques, “Incremental Conductance”, is simulated with solar-powered DC motor for an UAV design on MATLAB/Simulink. Findings The cascade structure (PV cell, MPPT, buck converter and DC motor models) is simulated and tested under various irradiance values, and results are compared to the DC motor technical data. As a result of that, mathematical model simulation results are overlapped with motor technical reference values in spite of irradiance changes. Practical implications It is suggested to be used in real time applications for future developments. Originality/value Different from other solar-powered DC motor literature works, a solar-powered DC motor mathematical model of an UAV is designed and simulated on MATLAB/Simulink environment. To adjust the maximum power output at the solar cell, incremental conductance MPPT technique is preferred and a buck converter structure is connected between MPPT and DC motor mathematical model. It is suggested to be used in solar-powered UAV designs for future developments.


2014 ◽  
Vol 611 ◽  
pp. 175-182 ◽  
Author(s):  
Ľubica Miková ◽  
Michal Kelemen ◽  
Ivan Virgala ◽  
Maroš Michna

The subject of creation of simulation and mathematical models is nowadays more and more current and its application is in almost every aspect of life. The article deals with compiling a mathematical model of a pivoting arm using Lagrange equations of the second kind. Subsequently, the model will be created in the simulation program Matlab/Simulink. The simulation model will as well be assembled in the program Adams. The results of these simulations will be compared in the conclusion. This article presents a procedure for resolving a mechanical system from the beginning, from creation of a mathematical model through creation of a simulation model up to evaluation of the simulation results. This paper presents a procedure for resolving mechanical system from the beginning. Thus, it is done by creating a mathematical model through the creation of a simulation model to evaluate the results of the simulation. According to these simulations will produce a working model of the manipulator, which could be used for teaching purposes.


2015 ◽  
Vol 220-221 ◽  
pp. 244-250 ◽  
Author(s):  
Ľubica Miková ◽  
Ivan Virgala ◽  
Michal Kelemen

One of the most commonly used actuators in industry are DC motors because of their relative control simplicity, small dimensions and a low price. The paper analyses a DC motor with focus on speed control using two different approaches. First, a mathematical model of the DC motor is introduced. For controller design, two methods, namely the frequency shaping method and PWM control, are used. Both approaches are simulated and compared to each other. For running simulations, software Matlab/Simulink has been applied. The conclusion discusses the advantages and disadvantages of the employed control methods. The contribution of the paper brings information about the advantages and disadvantages of approaches.


Author(s):  
Hyago Costa Sousa ◽  
Nathan José Pereira da Silva ◽  
Emmanuel Moreira Pereira ◽  
Carlos Roberto Marinho da Silva Filho ◽  
Weysser Felipe Cândido de Souza

<p>Objetivou-se descrever o processo de secagem do eixo central de jaca por modelos matemáticos e determinar qual modelo matemático apresentou os melhores ajustes para as características avaliadas. Foi estudado a secagem do eixo central de jaca em estufa com circulação e renovação de ar em quatro temperaturas diferentes 50, 60 70 e 80 °C utilizando modelos matemáticos para a descrição da quantidade de água no eixo central de jaca, foram utilizados frutos adquiridos no pomar do Centro de Ciências Humanas, Sociais e Agrarias, Bananeiras-PB pertencente a Universidade Federal da Paraíba. De acordo com a análise de dados o modelo de Page foi o que apresentou os melhores coeficientes de determinação e os melhores ajustes aos dados experimentais.</p><p align="center"><strong><em>Use of numerical and analytical solutions in the description of the drying of the central axis of jackfruit</em></strong></p><p><strong>Abstract</strong>: This study aimed to describe the process of drying the central axis of jackfruit by mathematical models and determine which mathematical model presented the best fit for the characteristics. This study investigated the drying of the central axis of jackfruit in an oven with circulation and air exchange at four different temperatures 50, 60, 70 and 80 ° C using mathematical models to describe the amount of water in the central axis of jackfruit, fruits were utilized acquired in orchard Humanities Center, Social and Agricultural, Bananeiras-PB belonging to the Federal University of Paraíba. According to the data analysis the Page model showed the best determination coefficients and the best fit to the experimental data.</p>


Sign in / Sign up

Export Citation Format

Share Document