scholarly journals Anti-proliferative Properties of New Variety Organic Rice MRQ74 Extracts against Colon Cancer Cells: In-vitro Study

Author(s):  
Mohd Adzim Khalili Rohin ◽  
Norhayati Abd Hadi ◽  
Norhaslinda Ridzwan

Aims: To examine the anti-proliferative properties of different extracts of new variety an organic rice MRQ74 towards colon cancer cells: in-vitro study. Study Design: Experimental study. Place and Duration of Study: Central Laboratory, Tissue Culture Laboratory, University of Sultan Zainal Abidin, Terengganu from November 2019 until February 2020. Methodology: The organic rice MRQ74 extracts had been led to tetrazolium salt reduction (MTT) assay and an inhibition concentration of 50 (IC50) value for their cytotoxic potential against colon cancer cells. Meanwhile, cells morphology observation and fluorescence double staining of treatment cells were determined using a light inverted microscope and acridine orange/propidium iodide staining. Results: Results showed that 50% aqueous ethanol of rice grains gave the lowest IC50 values towards HCT-116 and CT-26 cell lines, while an aqueous solution of rice grains gave the lowest IC50 values towards HT-29 cells (p<0.05). Thoroughly, the treated colon cancer cells had shown morphological alterations after treated with different solvent extracts of an organic rice MRQ74. Conclusion: The outcomes had observed preliminary results on cancer study for better health by inspiring the consumption of an organic rice MRQ74 and future product developments.

2017 ◽  
Vol 12 (2) ◽  
pp. 196-200 ◽  
Author(s):  
Samira Rasouli Koohi ◽  
Mohammad Ali Derakhshan ◽  
Faramarz Faridani ◽  
Samad Muhammad Nejad ◽  
Saeid Amanpour ◽  
...  

2017 ◽  
Vol 18 (7) ◽  
pp. 1396 ◽  
Author(s):  
Magdalena Fic ◽  
Agnieszka Gomulkiewicz ◽  
Jedrzej Grzegrzolka ◽  
Marzenna Podhorska-Okolow ◽  
Maciej Zabel ◽  
...  

Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Author(s):  
Mattias Lepsenyi ◽  
Nader Algethami ◽  
Amr A. Al-Haidari ◽  
Anwar Algaber ◽  
Ingvar Syk ◽  
...  

AbstractPeritoneal metastasis is an insidious aspect of colorectal cancer. The aim of the present study was to define mechanisms regulating colon cancer cell adhesion and spread to peritoneal wounds after abdominal surgery. Mice was laparotomized and injected intraperitoneally with CT-26 colon carcinoma cells and metastatic noduli in the peritoneal cavity was quantified after treatment with a CXCR2 antagonist or integrin-αV-antibody. CT-26 cells expressed cell surface chemokine receptors CXCR2, CXCR3, CXCR4 and CXCR5. Stimulation with the CXCR2 ligand, CXCL2, dose-dependently increased proliferation and migration of CT-26 cells in vitro. The CXCR2 antagonist, SB225002, dose-dependently decreased CXCL2-induced proliferation and migration of colon cancer cells in vitro. Intraperitoneal administration of CT-26 colon cancer cells resulted in wide-spread growth of metastatic nodules at the peritoneal surface of laparotomized animals. Laparotomy increased gene expression of CXCL2 at the incisional line. Pretreatment with CXCR2 antagonist reduced metastatic nodules by 70%. Moreover, stimulation with CXCL2 increased CT-26 cell adhesion to extracellular matrix (ECM) proteins in a CXCR2-dependent manner. CT-26 cells expressed the αV, β1 and β3 integrin subunits and immunoneutralization of αV abolished CXCL2-triggered adhesion of CT-26 to vitronectin, fibronectin and fibrinogen. Finally, inhibition of the αV integrin significantly attenuated the number of carcinomatosis nodules by 69% in laparotomized mice. These results were validated by use of the human colon cancer cell line HT-29 in vitro. Our data show that colon cancer cell adhesion and growth on peritoneal wound sites is mediated by a CXCL2-CXCR2 signaling axis and αV integrin-dependent adhesion to ECM proteins.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4417
Author(s):  
Rabin Neupane ◽  
Saloni Malla ◽  
Mariam Sami Abou-Dahech ◽  
Swapnaa Balaji ◽  
Shikha Kumari ◽  
...  

A novel series of 4-anilinoquinazoline analogues, DW (1–10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


2021 ◽  
Vol 10 (1) ◽  
pp. 572-585
Author(s):  
Darren Yi Sern Low ◽  
Camille Keisha Mahendra ◽  
Janarthanan Supramaniam ◽  
Loh Teng Hern Tan ◽  
Learn Han Lee ◽  
...  

Abstract In this study, ultrasonically driven biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Swietenia macrophylla seed ethyl acetate fraction (SMEAF) has been reported. X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) analyses confirmed the presence of a pure hexagonal wurtzite structure of ZnO. Field emission scanning electron microscope images revealed the formation of uniquely identifiable uniform rice-shaped biologically synthesized ZnOSMEAF particles. The particle sizes of the biosynthesized NPs ranged from 262 to 311 nm. The underlying mechanisms for the biosynthesis of ZnOSMEAF under ultrasound have been proposed based on FTIR and XRD results. The anticancer activity of the as-prepared ZnOSMEAF was investigated against HCT-116 human colon cancer cell lines via methyl thiazolyl tetrazolium assay. ZnOSMEAF exhibited significant anticancer activity against colon cancer cells with higher potency than ZnO particles prepared using the chemical method and SMEAF alone. Exposure of HCT-116 colon cancer cells to ZnOSMEAF promoted a remarkable reduction in cell viability in all the tested concentrations. This study suggests that green sonochemically induced ZnO NPs using medicinal plant extract could be a potential anticancer agent for biomedical applications.


2012 ◽  
Vol 23 ◽  
pp. iv85-iv86
Author(s):  
Ying Lin ◽  
Yuan-yuan Fang ◽  
Hong Su ◽  
Zhou Hui-Min ◽  
Qi-Kui Chen

Sign in / Sign up

Export Citation Format

Share Document