scholarly journals Optimization of Site-Specific Drug Delivery System of Tyrosine Kinase Inhibitor Using Response Surface Methodology

Author(s):  
S. Parimala Krishnan ◽  
Cinnayyagari Mahesh Reddy ◽  
Challa Balashekar Reddy

Aims: The aim of present study was to develop a stomach specific formulation of Imatinibmesylate to increase the fraction of drug absorbed in stomach. Study Design: Development and Optimization of Microspheres for site specific delivery.. Place and Duration of Study: The study was carried out in Department of Pharmacy, Annamalai University, between October 2020 and July 2021. Methodology: Ionotropic gelation method with Sodium alginate and Chitosan were used to formulate the mucoadhesive microspheres with calcium chloride. The formulation was optimized using Box – Behnken design to study the effect of independent variables, Amount of Sodium Alginate (X1), Amount of Chitosan (X2) and concentration of Calcium Chloride (X3) on dependent variables Particle Size (Y1), Entrapment Efficiency (Y2) and In-vitro drug release (Y3). Results: Particle size of prepared microspheres varied from 458.25 to 810.75 μm, entrapment efficiency from 64.87 to 82.63% and in-vitro release from 69.22 to 83.50%. The optimized formulation was found using point prediction, and formulation showed optimum results. The drug release was controlled for more than 12 h. Conclusion: Stomach specific formulation of Imatinibmesylate was successfully optimized by a three-factor, three level Box – Behnken design.


Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.



Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..



Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.



Author(s):  
Pavani S ◽  
Mounika K ◽  
Naresh K

The present study is to formulate and evaluate Acyclovir (ACV) microspheres using natural polymers like chitosan and sodium alginate. ACV is a DNA polymerase inhibitor used in treating herpes simplex virus infection and zoster varicella infections. Acyclovir is a suitable candidate for sustained-release (SR) administration as a result of its dosage regimen twice or thrice a day and relatively short plasma half-life (approximately 2 to 4 hours). Microspheres of ACV were prepared by an ionic dilution method using chitosan and sodium alginate as polymers. The prepared ACV microspheres were then subjected to FTIR, SEM, particle size, % yield, entrapment efficiency, in vitro dissolution studies and release kinetics mechanism. The FTIR spectra’s revealed that, there was no interaction between polymer and ACV. ACV microspheres were spherical in nature, which was confirmed by SEM. The particle size of microspheres was in the range of 23.8µm to 39.4µm. 72.9% drug entrapment efficiency was obtained in the formulation F3 (1:3 ratio) with a high concentration of calcium chloride (4% w/v). The in vitro performance of ACV microspheres showed sustained release depending on the polymer concentration and concentration of calcium chloride.   The release data was best fitted with zero order kinetics and Korsemeyer -Peppas release mechanism and diffusion exponent ‘n’ value of was found to be Non-Fickian.



2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.



2018 ◽  
Vol 10 (4) ◽  
pp. 133 ◽  
Author(s):  
Shweta Gedam ◽  
Pritee Jadhav ◽  
Swati Talele ◽  
Anil Jadhav

Objective: The present investigation was undertaken to develop and evaluate a gastroretentive mucoadhesive microspheres of anti-osteoporosis drug risedronate sodium to enhance the residence time and drug release by studying the effect of the crosslinking agent to obtain the best formulation with reduced particle size and good in vitro mucoadhesion strength.Methods: Selected drug risedronate sodium is a potent pyridinyl bisphosphonate used for the treatment of osteoporosis, and other bone disorders. Microspheres using sodium alginate as a polymer and calcium chloride solution as a cross-linker were prepared successfully by the emulsification crosslinking method. The 23 factorial design was used to study the effects of various variables like a drug: polymer ratio, crosslinking agent concentration and crosslinking time on the particle size and in vitro mucoadhesion strength. All these formulations were evaluated for entrapment efficiency, percentage yield and cumulative drug release. F1 batch was selected as best formulation and evaluated for scanning electron microscopy, fourier transforms infrared spectroscopy, differential scanning calorimetry, stability study.Results: Design batches were evaluated for percent yield (61.29-89.33%), % entrapment efficiency (42.25±0.620-62.58±0.330), mucoadhesion strength (68.15±0.37-82.24±0.72%) and drug release at 12 h (67-84%). Among the microspheres formulation, an F1 batch of (0.5:1) drug: polymer concentration and at 4% concentration of calcium chloride as a crosslinker was considered best formulation with reduced particle size 32.85±0.774μm, % intro mucoadhesion. 82.24±0.72. In vitro mucoadhesion strength was increased with the increasing crosslinking time from 5 min to 10 min. The fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) study showed no interaction between drug and polymer. X-ray diffraction (XRD) spectrum of microspheres indicates that drug particles are dispersed at the molecular level in the polymer matrices so no indication of the crystalline nature of the drug nature. Scanning electron microscopic (SEM) study showed that microspheres were spherical in shape with a smooth surface. F1 batch shows percentage cumulative drug release 84.07%. In vitro dissolution studies indicates that percent cumulative drug release from microspheres follows zero order kinetics plot which indicates controlled-release drug-delivery for 12 h which leads to control of plasma concentration.Conclusion: The results show that the formulation that contains (0.5:1) drug: polymer ratio, calcium chloride in 4% concentration and crosslinking time 10 min is the best one and can be utilized to formulate risedronate sodium mucoadhesive microspheres to enhance gastric residence time, improved patient compliance and reduction in the frequency of drug administration.



2013 ◽  
Vol 49 (4) ◽  
pp. 889-901 ◽  
Author(s):  
Trishna Bal ◽  
Shubhranshu Sengupta ◽  
Padala Narasimha Murthy

Inclusion complexes of carvedilol(CR) with hydroxyl propyl beta-cyclodextrin (HPBCD) was prepared using co-grinding technique. Then, the inclusion complex was microencapsulated using combinations of Eudragit NE30D (EU) and sodium alginate (SA) utilizing orifice gelation technique. The formulations were analysed by using Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), Differential scanning Calorimetry (DSC) and X-ray diffractometer (XRD) and also evaluated for particle size, encapsulation efficiency, production yield, swelling capacity, mucoadhesive properties, zeta potential and drug release. The microcapsules were smooth and showed no visible cracks and extended drug release of 55.2006% up to 12 hours in phosphate buffer of pH 6.8, showing particle size within the range of 264.5-358.5 µm, and encapsulation efficiency of 99.337±0.0100-66.2753±0.0014%.The in vitro release data of optimized batch of microcapsules were plotted in various kinetic equations to understand the mechanisms and kinetics of drug release, which followed first order kinetics, value of "n" is calculated to be 0.459 and drug release was diffusion controlled. The mice were fed with diet for inducing high blood pressure and the in vivo antihypertensive activity of formulations was carried out administering the optimized formulations and pure drug separately by oral feeding and measured by B.P Monwin IITC Life Science instrument and the results indicated that the bioavailability of carvedilol was increased both in vitro and in vivo with the mucoadhesive polymers showing primary role in retarding the drug release.



Author(s):  
DIVYA SANGANABHATLA ◽  
R. SHYAM SUNDER

Objective: The present paper describes the development and evaluation of a Novel Finasteride (FSD) nanogel topical delivery for the treatment of Androgenetic Alopecia. Nano-based topical formulation was chosen to enhance the solubility, permeability, biocompatibility of drug and to overcome the problems associated with the oral delivery of finasteride. Methods: Various trails batches were prepared by using probe sonication method. Based on stability studies and particle size, NP4 trail was optimized which exhibited a spherical shape with a mean diameter of 113.80±0.72, the polydispersity of 0.28±0.01, zeta potential of-25.2 mV, drug entrapment efficiency of 92.67±0.47 %, and drug loading of 6.15±0.02 %. Storage stability studies demonstrated that the particle size and entrapment efficiency were not changed during 3 mo both at 4 °C and room temperature. Finasteride (FSD) NLCs were characterized for particle size by scanning electron microscope (SEM), chemical state by X-Ray diffraction (XRD), physical stability by centrifugation and thermodynamic stability by Freeze-thaw method. These prepared nanoparticles were transformed into topical nanogel and further evaluated. Results: Among the different trails, C2 trail of NLC gel has shown excellent gelling capacity, clear appearance, good viscosity characteristics and was selected for further evaluation studies. Batches of topical nanogel were characterized through pH, homogeneity, spreadability, viscosity, drug content and in vitro drug release study. Based on pH (6.5-6.8), drug content (91.25±0.9%), spreadability (6.7 cm/sec), C2 batch was subjected to In vitro skin occlusivity study, in-vitro release study and In vitro heamolysis study. Conclusion: The percent cumulative drug release for Finasteride (FSD) gel was found to be 758.52±1.49 µg at 24 h which is quite higher than plain gel and Finasteride (FSD) gel showed maximum occlusiveness and excellent spreadability and found to be stable. In conclusion, prepared Finasteride (FSD) Nanogel could be used with promising potential for the treatment of Androgenetic Alopecia.



Author(s):  
A. Aparna ◽  
C. M. Shalina ◽  
D.V.R.N. Bhikshapathi

The current objective of the investigation was to fabricate Pirenzepine loaded microspheres for the treatment of gastritis delivered through oral route. The microspheres were prepared by ionotropic gelation technique using sodium as alginate polymer and calcium chloride as cross-linking agent. The effect of polymer and cross-linking agent on particle size, shape, % yield, entrapment efficiency, and drug release were studied. The prepared microspheres morphology and physicochemical properties of were investigated by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Among the total S14 formulations, S7 formulation was optimized at 2.2% of sodium alginate, 7% of calcium chloride maintained100rpm for 10 min at room temperature. The optimized S7 formulation displayed the %EE 94.10%, particle size 82.45 ± 0.09μm, % yield 96.30% and swelling index of 95.13%. From In vitro drug release studies S7 shown 97.17 ± 0.28% up to 12 h in 0.1N HCl, and the drug release followed the zero order and Korsmeyer- Peppas model (R2 = 0.987, 0.995) respectively, indicating the possible drug release mechanism to be by erosion and diffusion. The marketed product showed the drug release of 95.23 ± 0.21% within 1 h. The optimized S7 formulation subjected to stability studies for 6months as per ICH guidelines, no appreciable difference was observed hence the S7 formulation found stable. The data obtained thus suggest that a micro particulate system can be successfully designed for sustained delivery of Pirenzepine and to improve its bioavailability



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bhavin K. Patel ◽  
Rajesh H. Parikh ◽  
Pooja S. Aboti

Objective. The main objective of the present investigation was to develop and optimize oral sustained release Chitosan nanoparticles (CNs) of rifampicin by design of experiment (DOE). Methodology. CNs were prepared by modified emulsion ionic gelation technique. Here, inclusion of hydrophobic drug moiety in the hydrophilic matrix of polymer is applied for rifampicin delivery using CN. The 23 full-factorial design was employed by selecting the independent variables such as Chitosan concentration (X1), concentration of tripolyphosphate (X2), and homogenization speed (X3) in order to achieve desired particle size with maximum percent entrapment efficiency and drug loading. The design was validated by checkpoint analysis, and formulation was optimized using the desirability function. Results. Particle size, drug entrapment efficiency, and drug loading for the optimized batch were found to be 221.9 nm, 44.17 ± 1.98% W/W, and 42.96 ± 2.91% W/W, respectively. In vitro release data of optimized formulation showed an initial burst followed by slow sustained drug release. Kinetic drug release from CNs was best fitted to Higuchi model. Conclusion. Design of Experiment is an important tool for obtaining desired characteristics of rifampicin loaded CNs. In vitro study suggests that oral sustained release CNs might be an effective drug delivery system for tuberculosis.



Sign in / Sign up

Export Citation Format

Share Document